
STARS: Space–Time Analysis of Regional

Systems

Sergio J. Rey1,2, Mark V. Janikas1

1Department of Geography, San Diego State University, San Diego, CA, 2Regional Economics Application

Laboratory, University of Illinois, Urbana, IL

Space–Time Analysis of Regional Systems (STARS) is an open-source package de-

signed for the dynamic exploratory analysis of data measured for areal units at multiple

points in time. STARS consists of four core analytical modules: Anselin (1995)

exploratory spatial data analysis; Anselin (2003) inequality measures; Carlino and

Mills (1993) mobility metrics; and Christakos, Bogaert, and Serre (2001) spatial Mark-

ov. Developed using the Python object-oriented scripting language, STARS lends itself

to three main modes of use. Within the context of a command line interface (CLI),

STARS can be treated as a package which can be called from within customized

scripts for batch-oriented analyses and simulation. Alternatively, a graphical user

interface (GUI) integrates most of the analytical modules with a series of

dynamic graphical views containing brushing and linking functionality to support

the interactive exploration of the spatial, temporal, and distributional dimensions

of socioeconomic and physical processes. Finally, the GUI and CLI modes can be

combined for use from the Python shell to facilitate interactive programming and

access to the many libraries contained within Python. This article provides an over-

view of the design of STARS, its implementation, functionality, and future plans. A

selection of its analytical capabilities are also illustrated that highlight the power and

flexibility of the package.

Introduction

One of the active areas in the field of geographic information sciences (GIS) is the

development of new methods of exploratory spatial data analysis. A number of

impressive efforts have recently appeared to provide researchers with powerful

tools for both geospatial statistical analysis, data mining, as well as geovisualiza-

tion. Well-known efforts include the GeoDa environment (Anselin 2003), the

GeoVista Studio (Takatsuka and Gahegan 2002), Cartographic Data Visualizer
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(Dykes 1995), SAGE (Haining, Wise, and Ma 2001) and the ArcView-XGobi project

(Symanzik et al. 1998).

A new addition to this field is the package Space–Time Analysis of Regional

Systems (STARS). STARS is an open-source environment written in Python

that supports exploratory dynamic spatial data analysis. Dynamic takes on

two meanings in STARS. The first reflects a strong emphasis on the incorpora-

tion of time into the exploratory analysis of space–time data. To do so, STARS

combines two sets of modules, visualization and computation. The visualization

module consists of a family of geographical, temporal, and statistical views that are

interactive and interdependent. That is, they allow the user to explore patterns

through various interfaces and the views are dynamically integrated with one

another, giving rise to the second meaning of dynamic spatial data analysis. On

the computational front, STARS contains a set of exploratory spatial data

analysis (ESDA) modules, together with several newly developed measures for

space–time analysis.

This article provides the first detailed introduction to STARS and is organized as

follows. The motivation giving rise to the creation of STARS is discussed in the

following section. A detailed overview of the analytical components of the package

are presented in ‘‘Components and design.’’ The capabilities of these components

are then illustrated in a series of examples drawing from the study of regional in-

come dynamics in ‘‘Illustrations.’’ The article closes with an outline of future plans

for the continued development of STARS.

Motivation

As is common with many open-source packages, STARS was born out of a need to

scratch an itch. In this instance the itch was the lack of an integrated statistical

toolkit that supported the analysis of both the spatial and temporal dimensions of

regional income growth and convergence. Regional convergence or divergence has

both temporal and spatial dimensions, and in studying these processes researchers

have relied on either spatial analysis (Rey and Montouri 1999) or time series

methods (Carlino and Mills 1993).1

To consider both dimensions jointly requires the use of two different sets

of methods, yet with the existing software this meant having to switch between

software packages. This turns out to be a rather awkward way to do exploratory

data analysis. It is clear that new tools are needed for an EDA toolkit that truly

integrates space and time. While the question of time in GIS has attracted much

conceptual attention (Egenhofer and Golledge 1997; Peuquet 2002), operational

systems implementing both geocomputational and geovisualization components

that also incorporate time are few in number.2 STARS is an attempt to fill this niche.

Although the initial motivation for STARS was the study of regional income

dynamics, the methods and tools it contains can be applied to a wide set of

socioeconomic or physical processes with data measured for areal units over

multiple time periods.
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Components and design

It was decided in the genesis of the STARS project that the exploratory geocom-

putational methods and the visualization techniques used to express them be de-

veloped separately. This facilitated the development of the STARS package in a

modular fashion which has enabled users to interact with the program in a number

of ways. First, the geocomputational and visualization modules can be linked to-

gether in a user-friendly, interactive, graphical interface. Second, the individual

modules can be used as a library and combined with scripts written in Python (or

other scripting languages). The modularity also permits easy extension of STARS

through the development of specialized modules. We shall return to this issue later

on. Next we discuss the two core modules of STARS, geocomputation and visu-

alization.

Geocomputation

The methods used to explore the dynamics of space–time data have been broken

into distinct categories, which are outlined in Table 1. While STARS has many of

the standard summary statistic capabilities that one would find in any number of

data analysis packages, it is its inherent ability to identify and analyze the space–

time characteristics of the data that makes it a unique environment.

STARS has focused on incorporating recent advances in the analysis of spatial

dependence. Global measures of spatial autocorrelation are included for the anal-

ysis of dependence over a region. The program also contains Local Indicators of

Spatial Autocorrelation (LISAs) which give a more disaggregated view at the nature

of dependence (Anselin 1995). These have been extended to a dynamic context in a

number of new empirical measures such as Spatial Markov matrices, LISA Markov

matrices, and indicators of spatial cohesion and flux introduced by Rey (2001).

Table 1 Geocomputational Methods Contained in STARS

Category Description

Descriptive statistics This category contains distribution and summary measures for

variables by cross-section, time period, or pooled

Exploratory spatial data

analysis

Includes various methods specifically designed to analyze

spatial dependence. Global and local versions of Moran’s I,

Geary’ c and the G statistic are provided

Inequality Techniques that quantity and decompose inequality over time

and space. Includes classic and spatial Gini Coefficients as well

as Theil decomposition

Mobility Recent advances in internal mobility dynamics are presented

through the t and y statistics

Markov analysis Transitional dynamics of distributional attributes are examined

through the use of classic Markov and spatial Markov techniques
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A series of alternative computational categories that deal with inter/intradistri-

butional dynamics are also contained in STARS. Measures such as Theil’s (1996)T

can be used to evaluate and decompose inequality over time and space (see Rey

2004a, for an illustration). STARS also incorporates enhanced methods that identify

various aspects of mobility within a distribution. These include spatially explicit

rank-correlation measures and regime-based mobility decompositions introduced

by Rey (2004b), as well as spatialized Gini coefficients. All these new measures

provide insights as to the role of spatial context in the evolution of variable distri-

butions over time and space.

STARS also provides a host of data and matrix utility functions. These

can be used to create new or transform existing variables as well as to construct

alternative forms of spatial weights matrices, network representations of

spatial structure, and temporal covariance matrices. The latter allow for detailed

investigation and comparison of the implied relationships between spatial

observations as reflected in various spatial weights matrices and those

revealed from the temporal comovement of variables for different cross-

sectional units.

Visualization

A list of the visualization capabilities of the STARS module is presented in Table 2.

STARS contains some views that are standard to an exploratory data package,

however, the dynamic linking mechanisms enhance the user’s ability to analyze

data over various dimensions (see ‘‘Illustrations’’ for examples).

Table 2 Visualization Capabilities in STARS

Category Description

Map A variety of sequential, categorical, and user-defined choropleth maps

Scatter plot A basic two-dimensional view, the scatter plot can be used to analyze

cross-sectional, time period, or bivariate correspondence in X–Y space

Conditional scatter

plot

Extends the traditional scatter plot to three dimensions by conditioning

the color of the data points by the level of a third variable

Parallel coordinate

plot

Allows the user to view multivariate relationships over space and time

Time-series plot Plot the evolution of a variable for a given spatial unit

Time–path plot Demonstrates the comovement of a variable for two spatial units over

time

Histogram Creates a basic partitioning of a variable into respective bins

Density Contains empirical kernel density estimation for the analysis of

dispersion, modality, and skewness

Box plots Another distributional view with an added focus on quantiles and

outliers
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Some of the views are multidimensional by nature. The conditional scatter plot

can provide an additional facet to its traditional counterpart through a color

weighting scheme based on a requisite variable. This supports the use of categor-

ical variables for regime-based analysis and a simple time variable which can

identify hidden evolutions.

The time–path plot illustrates the pair-wise movement of two variables

and/or observations over time. This view is helpful in identifying levels

of stability across a given structural process. Individual aspects of the comove-

ment progression can be dissected by interval gaps and distinct directional

movements.

STARS also contains a series of maps which can be created and altered

through the use of various commands. One example involves the visualization

of covariance matrices over space. The covariance structure of a variable is

portrayed as a series of links between the centroids of each polygon. Positive

correlations are colored differently than negative ones to more distinctly identify

cross-sectional relationships. Threshold capabilities assure that the user can

map covariance links based on specified criterion. These are illustrated later in

the article.

Figure 1. Space–time analysis of regional systems in the graphical user interface mode.
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Design

As mentioned previously, STARS is written entirely in the Python language. Python

is an object-oriented scripting language gaining widespread acceptance as a lan-

guage for scientific computing (Hinsen 2000; Schliep, Hochstättler, and Pattberg

2001; Saenz, Zubillaga, and Fernandez 2002; Langtangen 2004). As Python is open-

source and cross-platform, researchers interested in using STARS are not limited in

their choice of operating system or hardware platform. Moreover, Python has a

Figure 2. Space–time analysis of regional systems in command line interface mode.
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clean and simple syntax which facilitates collaboration by researchers wanting to

add extensions to STARS.

STARS is designed from the ground up as an object-oriented system. This has a

number of advantages. First, the internal architecture is accessible at a high level,

supporting the relatively easy enhancement of STARS via new specialized modules.

Second, from an end-user’s perspective, models, variables, matrices, and other core

elements of the system are all objects (i.e., instances of classes in Python parlance),

and thus are closer to the user’s problem domain than is the case in a system de-

signed around procedural programming.

In addition to being object-oriented in design, STARS is also highly modulari-

zed. The geocomputational and visualization modules are orthogonal, that is, they

can be used independently of one another, or they can be combined depending on

the requirements of a particular project. This modularity permits the use of STARS

in three different modes. The first is the graphical user interface (GUI) mode, where

the two sets of modules are tightly integrated. Here the user accesses the analytical

capabilities from a series of menu items as displayed in Fig. 1. This mode is well

Figure 3. Space–time analysis of regional systems in command line interface1graphical user

interface mode.
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suited to researchers wanting to apply exploratory space–time data analysis to a

substantive problem.

The second mode uses a command line interface (CLI) in which the compu-

tational module can be called directly from the Python interpreter. An example of

such use is seen in Fig. 2. This supports very efficient interactive computation,

similar to that found in other data analysis environments such as R Development

Core Team (2004). This mode also supports the wrapping of STARS modules inside

larger Python scripts to implement simulation programs through batch processing.3

STARS can also be used in a combined CLI1GUI mode as shown in Fig. 3. In

this mode the user has access to the Python interpreter via the terminal window

(upper left) and can create views either from that interpreter, or from the GUI (upper

right). Results of interactive commands entered in the shell are reported in the text

area of the GUI.

Illustrations

In this section a subset of the graphical and analytical capabilities of STARS

is highlighted drawing on examples from regional income convergence

Figure 4. Multiple views of the U.S. per capita income data.
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studies. STARS stresses the need to study multiple dimensions underlying

the data used in exploratory analysis. An illustration of this is provided in

Fig. 4 which contains four different views of data on U.S. regional incomes

for the lower 48 states. The upper left view is a quintile map for incomes in

1929. Next to this is the Moran scatter plot (Anselin 1995), indicating strong

positive spatial autocorrelation. Below the scatter plot, a histogram provides an

a-spatial view of the income distribution, while the view to the left of the histo-

gram portrays the time series for the global Moran statistic for the years 1929–2000.

The latter figure reveals that the level of spatial clustering fluctuates substantially

over time.

Linking and brushing views

In addition to providing views of the different dimensions (time, space, distribu-

tion), the views in STARS are also interactive. Interactivity can take on multiple

forms. The first is linking in which the selection of observations in an origin view

leads to the highlighting of associated observations in other destination views. An

example of this can be seen in Fig. 5, where the selection occurs on the origin view

Figure 5. Linking multiple views.
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(map) using a rectangle created and sized with the mouse. When the user releases

the mouse button, the polygons underneath the selection rectangle are selected and

observations associated with these selected polygons are then highlighted in the

three destination views.4

The second form of interaction is brushing which is illustrated in Fig. 6. Here

observations are selected in the same fashion as with linking, however the impact

of the selected set is different, and results in a refitting of the global autocorrelation

trend in the scatter plot to omit the states selected on the map. This provides insights

as to the leverage of the selected states on the level of spatial clustering for that

time period.

Space–time traveling and roaming

Linking and brushing can also be combined with a third form of interaction referred

to as roaming. When roaming, the selection rectangle remains on the screen and

the user can move it around the origin view, as is reflected in Fig. 7. Movement of

the selection rectangle creates a new selection set of observations on the origin

view to trigger the corresponding interaction signal (brushing or linking) on the

destination views.

Figure 6. Brushing multiple views.
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Similar to roaming, linking and brushing can also be combined with traveling.

Traveling on an origin view selects observations in a sorted order and triggers link-

ing or brushing on the destination views. The traveling is done automatically over

the entire set of observations on the origin view, giving the user a full depiction of

the particular type of interaction (linking or brushing). An example of this is shown

in Fig. 8 which combines cumulative brushing on the scatter plot and box plot

resulting from spatial traveling on the map.

Traveling can also be done on a time series view to trigger temporal updating of

destination views. The traveling proceeds from earliest period to the latest period

given the user views of all destination views for each time period in the sample. Al-

ternatively, the user can control the temporal updating by switching to roaming on a

time series view. This is illustrated in Fig. 9 where the vertical selector has been moved

over the year 1990. Again the three destination views (scatter plot, map, and box plot)

are updated to this year, which reveals an outlier in the box plot. The user then selects

that outlier observation on the box plot to trigger linking on the destination views

(map, time series, scatter plot) to reveal that the outlier observation is Connecticut.

The combination of linking and brushing with either space–time roaming or

traveling provides a powerful approach to exploratory visualization that can reveal

Figure 7. Roaming a map with brushing.
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patterns that otherwise would be very difficult to detect. An example of this can be

seen in Fig. 10 where a conditional scatter plot in the lower right corner is used to

combine the Moran scatter plots from each year in a single view. The observations

on each state’s income and that of its spatial lag are then conditioned on a third

variable, in this case time, and the conditioning uses color depth to indicate early

(light color) versus more recent (dark color) observations. The conditioning reveals

that the dispersion in state incomes has declined substantially over time. The figure

also reflects the result of the user selecting Illinois on the map to trigger linking in

the destination views. The own-lag pairs for all time periods for Illinois are then

highlighted in the conditional scatter plot to reveal that the spatial dynamics be-

tween Illinois and its neighbors have been qualitatively and quantitatively different

from the overall space–time dynamics in the U.S. space economy.

View-generated views

The view interactivity can be exploited to more fully explore these space–time

instabilities depicted in the conditional scatter plot. While the latter shows

that Illinois and its geographical neighbors have income dynamics moving in dif-

ferent directions, additional insights on these dynamics can be obtained by the user

Figure 8. Spatial traveling with brushing.
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combining a key press (control) with a mouse click on the Illinois-specific obser-

vation in the Moran scatter plot which generates a new view called a TimePath as

shown in the upper left of Fig. 11. The TimePath shows the comovement of Illinois

per capita income and its spatial lag of per capita income for all time periods with

subsequent time periods linked together.

The ability to generate new views through user actions on existing views offers

a powerful exploratory device. View-generated views can also be obtained from a

map origin view as seen in Fig. 12, where the user has issued the same selection

event on Illinois in the map to generate the time series view of relative income for

Illinois. This isolates the dynamics of Illinois income from the comovement dy-

namics in the TimePath, in a similar manner to the way the comovement dynamics

for Illinois were isolated in the TimePath from the full set of state-lag comovement

dynamics depicted in the conditional scatter plot.

Distributional dynamics

In addition to exploring spatial and temporal dimensions via view interactivity, the

distributional dynamics can also be examined. One approach is displayed in

Fig. 13 in which two densities for state relative per capita incomes are displayed,

Figure 9. Time roaming.
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one for the beginning of the period (1929) and one for the last year of the sample

(2000). To explore the movement of individual economies within the income dis-

tribution the user can trigger spatial traveling on the map serving as the origin view.

This then highlights each state (from lowest income to highest income) on the map

and identifies the positions of that state in the initial and terminal income densities.

As the traveling is done automatically for the entire set of spatial units, the user sees

the full extent of distributional dynamics. Following the automated traveling, the

user can then select individual states on the map to isolate on their mobility char-

acteristics. This is shown for Virginia which initially was a relatively poor economy

but has shown substantial upward movement in the income distribution.

Spatial and temporal dependencies

In addition to providing dimension-specific views, such as a TimePath or box plot

or quintile map, STARS enables the depiction of multiple dimensions on a single

view. This is illustrated in Fig. 14 which contrasts two forms of covariance in a

graph representation. The linkages reflected in a spatial weights matrix based on

contiguity are recorded as edges between polygon centroids for each state. These

Figure 10. Space–time instabilities.

Geographical Analysis

80



linkages are then conditioned on the strength of the temporal covariance between

each pair of contiguous states, with red lines indicating strong temporal linkages.

The nature of the specific temporal covariances between a state and the rest of

the system can then be explored using the spider graph depicted in Fig. 15. Here the

user can step through each state to determine which other states it has the strongest

temporal comovements with. In this case the spider graph reveals that California

income dynamics have not only been similar to some of its geographical neighbors,

but also in sync with the northeast states. This type of interaction is useful for

uncovering covariance relations that may not be obvious with traditional ESDA

techniques.

Future directions

STARS has evolved quickly from its origins as a specialized program to support

research on regional income dynamics to now being used by researchers, outside

of the development team, to examine such issues as spatial dynamics of fertility,

land-use cover change, segregation dynamics, migration, commodity flow patterns,

and housing market dynamics, among others. Each new application raises new

Figure 11. Scatter-plot-generated TimePath.
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demands for increased functionality and enhancement of STARS. Currently

there are a number of such enhancements that are major priorities for the devel-

opment team.

The first enhancement is the creation of a new type of map view to visualize

substantive flows between cross-sectional observations.5 There has been a growing

interest in the extension of flow maps to include temporal–spatial dynamics which

we believe STARS is quite posed to introduce. In short, the goal of this extension is

to demonstrate how flows between cross-sectional units evolve over time. Although

often used to study migration, the notion of flows is by no means confined to the

movement of people. Flows of commodities, for example, could be considered a

driver for many socioeconomic processes, and the inclusion of which could present

some interesting research avenues, such as the covariation between these flows and

economic growth and the construction of hybrid weight matrices based on spatial

constructs coupled with a-spatial flow linkages.

Another analytical front for the STARS module is cluster analysis. Although

some basic forms of spatial clustering are identifiable by a number of graphs and

maps produced in the current version of STARS, more analytical features on a-spa-

tial cluster analysis seem a fruitful avenue for future work. The research team has

an extensive body of code implementing agglomerative, partitive, and medoid

Figure 12. Map-generated time series.
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clustering methods written in a variety of languages (R, Octave, Python) in support

of ongoing research on industrial cluster analysis (Rey and Mattheis 2000; Rey

2000a–e, 2002). The integration of these methods in STARS is currently underway.

We are also exploring new approaches to recasting conventional measures of

distributional dynamics, such as the so-called s-convergence measure, to incor-

porate spatially explicit dimensions (Rey and Dev 2004). Coupled with this is work

on developing inferential methods for new space–time empirics based on both

analytical distributions as well as computationally based approaches.

STARS is a powerful environment for exploring data that has both temporal and

spatial dimensions. The interactivity of the various views helps to identify depend-

encies across various dimensions that may otherwise go unnoticed. These views are

also tied to a suite of recently developed advanced methods for ESDA and ESTDA.

Moreover, STARS has been designed for users with a wide range of demands and

skill sets. Researchers looking for a user-friendly GUI environment for exploratory

space–time analysis should feel at home with STARS. Others who are developing

new methods for exploratory analysis can easily integrate these into the modular

framework underlying STARS. In between these two groups are researchers

comfortable with writing simple macro-type scripts (in Python) to use STARS for

Figure 13. Distributional mixing.
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Figure 14. Spatial and temporal covariance networks.

Figure 15. Spider graph of temporal covariance networks.
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simulation experiments as well as for linkages with other model systems and sta-

tistical packages. We hope this design, together with the commitment to the open-

source development model, will attract researchers to collaborate on the enhance-

ment and future development path of STARS.
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Notes

1 For a recent overview of the empirical literature on spatial convergence, see Rey and

Janikas (2005).

2 For an example of such a system focusing on geophysical data, see Christakos, Bogaert,

and Serre (2001).

3 An example of such an application is reported in Rey (2004a).

4 The selection rectangle is not seen in Fig. 5 as it is erased upon completion of the selection.

5 See Tobler’s Flow Mapper at http://csiss.ncgia.ucsb.edu/clearinghouse/FlowMapper/for a

program designed for the sole purpose of studying flows.
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