Remote Sensing Platforms

Remote Sensing Platforms - Introduction

- Allow observer and/or sensor to be above the target/phenomena of interest
- Two primary categories
 - Aircraft
 - Spacecraft
- Each type offers different characteristics, advantages & disadvantages in terms of range, cost, stability, frequency, and scale

Types of Platforms

- Stationary
 - Hand-held / cranes
 - Captive/tethered balloons
 - Manned and unmanned
 - Useful for acquiring low altitude imagery with frequent coverage for dynamic phenomena
 - Relatively inexpensive, stable

Types of Platforms

- Lighter-than-air
 - Free floating <u>balloons</u>
 - Restricted by atmospheric conditions
 - Used to acquire meteorological/atmospheric data
 - Blimps/dirigibles
 - Major role news media/advertisers
- Helicopters
 - Can pin-point locations
 - Lack stability and vibrate

Unmanned Vehicles

Low Altitude Aircraft

- Generally operate below 30,000 ft
- Most widely used are single engine or light twin engine
- Imagery can be obtained by shooting out the window or placing camera mount on window or base of aircraft
- Suitable for obtaining image data for small areas (large scale)

High Altitude Aircraft

- Operate above 30,000 ft
- Includes jet aircraft with good rate of climb, maximum speed, and high operating ceiling
- Stable
- Acquire imagery for large areas (smaller scale)

U-2/ER-2

• Lockheed U-2 high altitude reconnaissance aircraft. Many U-2s are still in service as earth resource observation aircraft.

70,000 feet (21,000 m)

Jensen, 2000

Advantages/Disadvantages of Aircraft

Advantages

- Acquire imagery under suitable weather conditions
- Control platform variables such as altitude
- Time of coverage can be controlled -- flexibility
- Easy to mobilize

Disadvantages

- Expensive primarily cost of aircraft
- Less stable than spacecraft
 - Drift off course
 - Random attitude changes (turbulent motions)
 - Motion blurring

Spacecraft

- Numerous programs
- Manned and unmanned systems

Range

 Range for spacecraft is <u>determined by orbit</u>, which is fixed in altitude and inclination

http://www.youtube.com/watch?v=E4k3kEA3pmo

-Sun synchronous – near polar; cross equator at approximately same local time each day

 Geostationary – fixed orbit over equator; primarily meteorological systems

http://earthobservatory.nasa.gov/Features/OrbitsCatalog/page2.php

Aerial Photographic Systems

Aerial Support Hardware

- Used to improve quality of imagery by
 - Reducing effect of platform motion
 - Keeping attitude constant
- Image motion compensator
 - Moves film in same direction as aircraft at speed proportional to aircraft velocity
- Gyro Stabilization
 - Stabilizes camera within plane to keep it pointing
 - Adjusts orientation of camera if attitude of plane shifts

Aerial Cameras - Digital

- During exposure lens focuses light on bank of detectors
- Exposure causes an electrical charge that is related to amount of incident energy
- Electrical signal (analog) is converted to a digital brightness value
- Uses area array of solid-state chargecoupled-device (CCD) detectors in place of film

Aerial Cameras – Digital (cont)

Single chip camera

Uses single full-frame CCD

Filter is placed over each pixel capture red/green/blue or NIR/red/green wavelengths

- Three or Four camera system
 - Use 3 or 4 separate full-frame camera/CCDs
 - Each sensitive to different wavelength

Natural Color

Color Theory

- Primary colors
 - Red
 - Blue
 - Green

- Color characteristics
 - Hue − dominant λ (color)
 - Saturation purity of color
 - Intensity (value) light/dark

Hue

Saturation

Intensity

http://missionscience.nasa.gov/ems/emsVideo_04infraredwaves.html

http://map.sdsu.edu/aerial-photos.htm

Airborne Data Acquisition and Registration (ADAR)

ADAR 5500 System

Satellite-based Systems: LANDSAT & SPOT

Landsat

http://www.youtube.com/watch?v=BPbHDKgBBxA

Landsat System - History

Landsat - Satellite

- Weight ~ 2200 kg (5000 lbs)
- Length ~ 4.5 m (14 ft)
- Width ~ 3 m (9 ft)

Landsat - Orbit

- Sun synchronous, near polar
- ~ 705 km altitude
- 9:42 am equator crossing

Landsat Worldwide Reference System

- Location over earth catalogued by WRS path/row
- Each scene covers 185 km (wide) by 170 km (long)

Deforestation in Bolivia from 1975 to 2000

Source: http://www.satimagingcorp.com/gallery/landsat-deforestation-bolivia.html

Landsat - Thematic Mapper (TM)

Introduced on Landsat 4 (1982)

- Improvement over MSS on Landsat 1-3
 - Spectral extended spectral region visible, NIR, mid-IR and thermal
 - Spatial 30m vs. 80m (120m for thermal)
 - Radiometric 8-bit vs. 6-bit
 - Temporal 16 day (Landsat 1-3, 18 day)
 - *note* MSS continued on Landsat 4 & 5

I andsat 4 & 5

SPOT Satellite System

- Satellite Pour l'Observation de la Terre (SPOT)
- French Space Agency & other European countries

SPOT – Launch Vehicle

Ariane rocket – European design & manufacture

Launch site – French Guiana

Satellite	Sensors	Period of Operation
SPOT 5		L L
SPOT 4	MONO, Xi	L O
SPOT 3	PAN, XS	L F
SPOT 2	PAN, XS	L O
SPOT 1	PAN, XS	L N
		<u>ထိ</u> 7 8 9 နိုး 1 2 3 4 5 6 7 8 9 ရို 1 2 3 4 5
	L - Launch	F - Failure O - Operational N - Not used

http://www.astrium-geo.com/en/143-spot-satellite-imagery

Landsat-TM

SPOT-XS

SPOT HRV Design & Operation

- HRV (High Resolution Visible)
- Linear array 'pushbroom' system
 - Mirror focuses reflected energy on bank of detectors arranged side-byside and perpendicular to satellite orbit track
 - A line of data is obtained by sampling detectors along the array

Figure 2.11.1 schematic diagram of data acquisition by push broom scanner

SPOT

- SPOT 1 3
 - two HRV sensors
- SPOT 4 & 5
 - two HRV sensors
 - Vegetation sensor
- HRV sensor (High Resolution Visible)
 - panchromatic
 - multi-spectral
- VEGETATION sensor
 - multi-spectral

SPOT HRV - Panchromatic

- Panchromatic (PAN)
- Spatial resolution: 10 m
- Spectral resolution: 0.51 0.73 μm

SPOT HRV – Multispectral

- Multispectral (XS)
- Spatial resolution: 20 m
- Spectral resolution
 - $-0.50-0.59 \mu m$
 - $-0.61-0.68 \mu m$
 - $-0.79-0.89 \mu m$
 - $-1.58\text{-}1.75~\mu\text{m}$ (SWIR band added to SPOT 4)

SPOT - Pointability

Increased imaging frequency

SPOT – Pointability (cont)

• Stereoscopic imaging

SPOT Pointability (cont)

NASA EOS – Earth Observing System

- Integrated experiment to study earth as a system
- Planned as imaging and non-imaging instruments on series of satellites to study different science objectives
- EOS AM-1, renamed Terra launched in 1999
- EOS PM-1, renamed Aqua launched in 2002
- Sensors include MODIS, ASTER, MISR, CERES, MOPITT

Other Satellite Systems

Remote Sensing Data available in San Diego 2007 Wildfires

- Areal Photos (NEOS a light weighted aircraft),
 - UAV (NASA's Ikhana unmanned aircraft)
 - MODIS (NASA)
 - FORMOSAT-2 (Taiwan's NSPO)
 - EO-1 (NASA)
 - IKONOS (commercial)
 - SPOT (commercial)
 - QuickBird (commercial)
 - GOES-W (NASA)

NASA Unmanned Aerial Vehicles (UAVs) -- Ikhana

http://www.nasa.gov/centers/dryden/news/Features/200 7/wildfire_socal_10_07.html

MODIS (Terra and Aqua) 250m, 500m (daily)

Ikhana (UAV) (small coverage)

EO-1 (30m) – 16 days (not daily)

NASA GOES-W (b/w, very low resolution)

FORMOSAT-2 Imagery

(high resolution, daily, large coverage, naturecolor composites)

November 8-19, 2007, FORMOSAT-2

High Resolution Systems

- Commercial
 - Space Imaging IKONOS
 - EarthWatch QuickBird
 - Orblmage OrbView3
 - Linear array pushbroom
 - 0.6 4 m spatial resolution
 - ~ 10 x 10 km coverage per image
 - Visible, NIR, and Pan bands
 - High revisit (pointable)
 - Stereo coverage

On-screen Display

On-screen Display (cont.)

True Color

False Color IR

False Color

Landsat 7 Image of
Palm Spring, CA
30 x 30 m
(bands 4,3,2 = RGB)

Jensen, 2000

Landsat 7 Image of
Palm Spring, CA
30 x 30 m
(bands 7,4,2 = RGB)

Jensen, 2000

QuickBird Panchromatic Satellite Imagery (0.6 m)

QuickBird Pan-Sharpened Satellite Imagery (0.6

IKONOS Imagery of Columbia, SC Obtained on October 28, 2000

Panchromatic 1 x 1 m

Pan-sharpened multispectral 4 x 4 m