
278

GIScience & Remote Sensing, 2005, 42, No. 4, p. 278-302.
Copyright © 2005 by V. H. Winston & Son, Inc. All rights reserved.

A Web-Based Java Framework for Cross-Platform
Mobile GIS and Remote Sensing Applications

Ming-Hsiang Tsou, Liang Guo, and Anthony Howser
Department of Geography, San Diego State University, San Diego,
California 92182

Abstract: A cross-platform Web-based Java development framework for Mobile
Geographic Information Systems (Mobile GIS) and remote sensing (RS) applica-
tions is introduced for the notebook computer, Pocket PC, and mobile phone plat-
forms. Using these platforms, Java software technology is examined for its cross-
platform utility in the development of various Mobile GIS and map/image display
functions. The three case studies developed with Java 2 Standard Edition (J2SE),
Java 2 Micro Edition (J2ME), and Mobile Information Device Profile (MIDP) are
examined within the context of mobile GIS. Significant challenges in developing
cross-platform Mobile GIS applications are also discussed. These obstacles include
heterogeneous operating systems, different wireless communications protocols, low-
bandwidth network connections, and the general lack of usability.

INTRODUCTION

Compared to Desktop Geographic Information Systems (Desktop GIS), Mobile
GIS can provide Geographic Information Services (GIServices) in a more portable
platform to facilitate field-based data collection and access (Tsou, 2004a). By con-
necting to wireless Internet map/image servers and Global Positioning Systems (GPS)
data feeds, Mobile GIS devices can display map layers and remotely sensed imagery
effectively for various field-based GIS tasks.

Many practical field-based GIS applications and tasks require multiple hardware
devices for the query and display of spatially associated data. An example scenario
may involve delivery truck drivers who require maps of the optimal/shortest routes
between their delivery/pickup points. The drivers may wish to display their maps on
Pocket PC devices housed in their vehicles. If the drivers are not in their vehicles,
they may want to display the same maps on their mobile phones. Furthermore, the
drivers may want to generate hard copies of the same maps from their desktop com-
puters back in their offices. The requirements for this scenario mandate similar user
interface functionality and software interoperability with the map data on all three of
the computing platforms. Unfortunately, this kind of interoperability has seldom been
investigated. A significant obstacle to creating such a cross-platform map/image
query-and-display application is the general lack of software tools that can be used to
develop applications for multiple computing platforms.

WEB-BASED FRAMEWORK 279

Mobile GIS is a relatively new field in geographic information science
(GIScience) research. Mobile GIS applications emphasize flexible access to geo-
spatial data and location-based services through mobile computing devices. With the
advancement and convergence of GPS, Internet, wireless communication, and mobile
computing technologies, Mobile GIS has great potential to play critical roles in the
application domains of field data acquisition and validation (Pundt, 2002), and emer-
gency vehicle routing services (Derekenaris et al., 2001).

By exploiting the interoperability characteristics of the Java programming
language, Mobile GIS applications for three different platforms are examined and dis-
cussed. These platforms include the notebook computer, the Pocket PC, and the
mobile phone (Fig. 1). In each of these case studies, functionality and usability of GIS
and remote sensing applications is discussed.

CHALLENGES

Presently, Mobile GIS applications are appearing at an increasingly rapid pace in
private companies (Crisp, 2003), government agencies, and academic research insti-
tutions (Tsou, 2004a). However, there are some major challenges in the development
of cross-platform Mobile GIS applications, including:

Non-Standardized User Input. Different Mobile GIS hardware platforms have
dissimilar user interfaces and user interaction requirements. Most Pocket PC devices
and mobile phones provide a very limited user interface compared to notebook or
desktop computers. They are generally limited to such things as touch screens or
numeric keypads. Useful and effective user interfaces, which can be utilized on appli-
cations across different hardware platforms, are not readily available. Basic mapping

Fig. 1. Three different Mobile GIS platforms (notebooks, pocket PCs and mobile phones).

280 TSOU ET AL.

functions with GIS/RS datasets, such as zoom-in, zoom-out, and pan, will require dif-
ferent controls for each hardware platform. A possible solution to this issue includes
development of the user interface utilizing the rich cross-platform user interface tools
provided in the Java application development framework.

CPU Speed/Power, Memory and Data Storage Capacity. Mobile GIS devices
generally have less computing speed/power compared to their Desktop GIS counter-
parts. Desktop PCs usually have a significantly faster processor that can take advan-
tage of the greater space (large computer case), more power (large power supply
constantly plugged into an outlet), and more powerful cooling (high-wattage fans)
available to them. These factors allow for a significantly more powerful, faster, and
correspondingly hotter computer. On the other hand, Central Processing Units (CPUs)
in Mobile GIS devices, which are optimized for portability, may have very little
space, may run on very low power, and may have been designed to not run as hot
compared to their Desktop GIS hardware counterparts. Currently most Pocket PCs
are equipped with a 500 MHz–600 MHz CPU. This is in contrast to Desktop PCs with
a 1.5 GHz–3 GHz CPU. Memory and storage is another major limitation of Mobile
GIS devices. Most handheld computing devices have very limited memory and stor-
age capacity with up to 4 gigabytes of nonvolatile flash memory. On the other hand,
traditional Desktop GIS workstations can have upwards of 200–300 gigabytes of hard
disk space. Memory and storage requirements can be significant for large GIS and RS
datasets.

Screen Size, Resolution, and Colors. Mobile computing devices generally have
smaller screen areas, more limited screen resolution (pixels per unit area), and more
limited color depth (number of displayable colors) for GIS/RS data display. The lack
of a large screen area can significantly impact the usability of GIS/RS data display
applications.

Dissimilar Operating Systems. There are several mainstream operating systems
for mobile computing devices. Some include Windows Pocket PC, PalmOS,
Symbian, and the Java Phon e Operating System. Adapting customized software for
various platforms can be ve ry costly and time consuming. Mobile GIS software
designed for the PalmOS mobile computing operating system will not work on a
Pocket PC device unless it was developed using an interoperable programming
framework such as Java. Currently, most Mobile GIS software packages are platform/
operating-system specific.

Table 1 highlights some major differences between the three platforms discussed
for Mobile GIS applications. Factors included are user interface, CPU, memory,
screen characteristics, and mobile computing platform operating systems.

In the context of mainstream GIS applications, most mobile devices are severely
restricted and/or inadequate due to their small screen area, limited memory, and lim-
ited computational power. Software application programmers have to overcome these
limitations in order to provide a functioning and easy-to-use user interface. In Table 1,
some of the limitations might be solved advances in computer engineering technol-
ogy, such as CPU, battery life, and memory storage. For example, the CPU speed of
Pocket PCs has been significantly improved, from 70 MHz in 1999 (Compaq Aero
1530) to 624 MHz in 2005 (HP IPAQ hx4700). Some limitations are inevitable, such
as screen size and user interface/input.

WEB-BASED FRAMEWORK 281

One possible solution to address these limitations is to develop mobile comput-
ing device applications for the Java Runtime Environment (JRE). What makes Java
an effective candidate for facilitating interoperability between the varying platforms
lies at the heart of the Java programming language.

Unlike most computer programming languages where raw programming code is
compiled for a specific CPU and operating system, the Java programming language is
compiled for a generic CPU and operating system. This makes the code more porta-
ble. When raw Java programming code is compiled, a Java compiler creates standard-
ized Java “bytecode.” This bytecode represents a highly optimized set of instructions
for a Java Virtual Machine (JVM) (Schildt, 2004). The JVM, a key component of a
JRE, is actually software that simulates a generic CPU and operating system, and it
interprets Java bytecode in a uniform way (Hamilton, 1996). JVMs are available for
most computing platforms and operating systems and they are packaged within a
JRE. As long as the varying computer platforms have the same version of the JRE
installed, they will read, interpret, and execute the Java bytecode in the exact same
manner regardless of the operating system, computer hardware platform, etc. Because
of the portability of Java bytecode and the availability of Java Runtime Environments
(with corresponding JVMs) for all three platform study cases, it was deemed to be an
appropriate software programming framework to develop interoperable GIS/RS
applications for different hardware platforms.

Table 1. A Comparison between Three Different Mobile GIS Platformsa

Typical Mobile GIS
platforms: Notebook PCs Pocket PCs, PDAs,

hybrid smart phonesb Mobile phones

User interactivity/
user interfaces

Regular keyboard,
mouse, or pointing
devices

Touch screen with
stylus pen, limited
function buttons

Keypads with limited
function buttons

CPU 2.0 GHz (2000 MHz)
(Intel Pentium M
760)

600 MHz CPU 200 MHz (some models
have multiple CPUs)

Memory and data
storage

512 MB RAM and 60
GB hard drive

CF-card with 1–2 GB
RAM

 5–30 MB RAM

Screen size and
resolution

14- or 15-inch screen,
1024 × 768 or 1280 ×
800 pixels

3.2- to 4.0-inch screen,
320 × 480 or 640 ×
480 pixels

2-inch screen, 176 ×
220 pixels

Color depth/display True color (24 or 32
bits) = 16+ million
distinct colors

VGA color (16 bit),
65,536 colors

(16 bit) 65,536 colors
or B/W display

Operating system Windows or MacOS Pocket PC, Smart
Phone OS, or
PalmOS

Phone hardware
vendor–based,
proprietary systems

Battery life 2–5 hours 5–8 hours 5 hours (includes talk
time)

aBased on 2005 hardware specifications.
bPDA/mobile phone combo.

282 TSOU ET AL.

THE DEVELOPMENT OF MOBILE GIS AND
JAVA PROGRAMMING

Mobile GIS extends the capabilities of traditional Desktop GIS with a higher
level of portability, flexibility, and utility. Mobile GIS are integrated software/
hardware frameworks for the access of geospatial data and services through mobile
devices via wireline or wireless networks (Tsou, 2004a). Unique features of Mobile
GIS include the ability to incorporate Global Positioning System (GPS) receivers and
ground truth measurement equipment and functionality alongside the GIS applica-
tions. Typical Mobile GIS applications include field data acquisition and validation,
onsite real-time incident investigation and analysis, real-time work order manage-
ment, and real-time service/dispatch requests. In general, Mobile GIS is composed of
three distinct technological components: Internet-enabled GIS applications, GPS
technology, and handheld mobile computing platforms (Fig. 2).

The platforms of popular mobile computing devices include handheld computers
such as the Pocket PC and combination Personal Digital Assistant (PDA)–smart
phone variants. The two most common operating systems (OS) for mobile computing
devices are the Microsoft Windows Compact Edition (CE) OS and the Palm OS.
Generally, Pocket PCs and smart phone variants allow for data storage, indexing, and
querying. Typically, data entry is accomplished with a scaled-down keyboard, a pen-
like stylus, or both. Mobile computing devices, like their larger notebook computer
cousins, are powered by rechargeable batteries.

The adoption of mobile computing technology for personal and commercial use
is quite evident in mainstream society. Everyday examples include several variants of
digital wireless communications technology. These include cellular phones, Wireless
Application Protocol (WAP)–based devices, and Bluetooth-based devices for inter-
device communications and networking. This technology can also be used to query,
access, and display/execute existing entertainment content such as MPEG Layer-3
(MP3) audio files and digital video files, news alerts, stock market alerts, etc. Like the
adoption of email in industry, mobile computing technology has also become a useful
and accepted part of organizational infrastructure and practices. The rise in mobile

Fig. 2. The components of Mobile GIS technology.

WEB-BASED FRAMEWORK 283

computing technology utilization is highlighted by estimates showing a 1.3 billion
users and a $20 billion market by 2005 (Intergraph, 2002).

Mobile GIS is an integrated software/hardware framework for the access of
geospatial data and services through mobile devices via wireline or wireless networks
(Tsou, 2004a). There are two major application areas of Mobile GIS: field-based GIS
and location-based services (LBS). Field-based GIS focuses on GIS data collection.
Specific applications generally include field data validation and updating. These tasks
may involve adding or editing map features or attribute tables on an existing GIS
dataset. LBS generally focus on business-oriented location-management functions
including location search, navigation, and routing, vehicle tracking, etc. (Jagoe, 2002;
OGC, 2003a). A major difference between the field-based GIS and LBS application
areas involves data editing. Most field-based GIS applications require editing of the
original GIS dataset. This includes feature attribute modification. A specific example
may entail the survey of out-of-order stoplights by a local government employee.
LBS, on the other hand, rarely involve changes to an original GIS dataset. Instead, the
original data are used as persistent reference data, features, or “background” map
layers for query, navigation, or tracking applications.

Because Mobile GIS applications generally require cross-platform functionality,
the Java programming framework has been identified as a feasible and effective tool
for Mobile GIS software development. One of the original goals of Java was to pro-
vide a software application development solution for a heterogeneous and network-
based distributed environment of varying systems (Gosling and McGilton, 1996).
Because of Java’s powerful cross-platform capabilities, many software developers
and organizations launched initiatives to explore the utility of using Java for online
and distributed applications (Halfhill, 1997).

Distributed Java applications are generally implemented in two kinds of execu-
tion environments: a compile-time environment and a runtime environment (Schildt,
2004). The server-side compile-time environment generally entails the use of Sun
Microsystem’s Java Development Kit (JDK). The critical components of the JDK
include a Java compiler (Javac.exe), a Java interpreter (Java.exe), and several stan-
dardized Java class libraries. Application programmers use the Java compiler to auto-
matically link relevant Java class libraries and compile their text-based Java source
code into a Java class file represented in Java bytecode format. This Java bytecode
file can then be executed and interpreted on any local or networked computing system
with a compatible Java Runtime Environment. The Java Virtual Machine, a key com-
ponent of the runtime environment, actually interprets the bytecode file, links and
loads any additional requisite compiled classes, and, in the ideal situation, produces
the exact same actions, results, output, etc. on any system. This works because the
Java Virtual Machine of the Java Runtime Environment, on the client-side system,
takes the intermediate Java bytecode as input and produces machine code for that spe-
cific platform/system/device at runtime. This facilitates programming portability
because the same Java bytecode file can be used as input to any system. Backers of
the Java programming language describe this critical feature with the phrase, “Write
Once, Run Anywhere (WORA)” (Douglas, 1996; WORA, 2005). The main caveat is
the requirement of a compatible Java Runtime Environment, and associated Java
Virtual Machine, on the client-side system. An out-of-date version of the runtime may
not contain the proper libraries, syntax, or functionality that is called for in the

284 TSOU ET AL.

original programming code by the application developer. Thus, it is critical that the
application developer and the end user ensure that the client-side system has an up-to-
date runtime environment. To facilitate this, Sun Microsystems and many other soft-
ware vendors include automatic runtime environment detection and update function-
ality when executing Java applications over networks and on client-side systems such
as Internet Web browsers.

Java also supports execution over a network such as the Internet. The server-side
bytecode class file may reside on a Web server and the client-side runtime system
may be a Web browser with a Java Virtual Machine, or a mobile or desktop comput-
ing device with a Java Runtime Environment. This powerful feature of the Java appli-
cation framework is called Remote Method Invocation (RMI) and further facilitates
software application portability. In this instance, a constant Internet connection and a
compatible Java runtime is all that is required to run an application. Backers of the
Java programming language describe this feature with the expression, “The network
is the computer” (Sun Microsystems, 1998).

In general, there are two different architectures for the deployment of Java-based
GIS applications: the two-tier architecture and the three-tier architecture. Both of
these architectures can be distinguished by the way the client-server components are
partitioned. An application can be divided into three functional components: presenta-
tion, logic, and data (Shan and Earle, 1998). Figure 3 depicts the two-tier and the
three-tier architectures.

The two-tier design allocates the presentation component to the client and the
data component to the server (Peng and Tsou, 2003). The logic component is allo-
cated between the clients and servers, although most of the application portion of the
logic component is on the client environments (Sadoski, 2000). Thus, the first tier
generally consists of the presentation and logic components and the second tier con-
sists of the data and some logic components. Typical examples of two-tier architec-
tures include client-side Java applications, or Java applets, running on Internet Web
browsers (Fig. 4, left).

Fig. 3. Client-server system partition.

WEB-BASED FRAMEWORK 285

Fi
g.

 4
. C

lie
nt

-s
id

e
ap

pl
ic

at
io

n
(le

ft)
 a

nd
 se

rv
er

-s
id

e
ap

pl
ic

at
io

n
(r

ig
ht

).

286 TSOU ET AL.

In these examples, Internet users can transparently download applications and
access data remotely with a Java applet. Specific applications of Java applets include
online GIS analytical tools providing advanced user interfaces, unlimited user inter-
action, and high-quality image rendering techniques (Andrienko et. al, 1999;
Coddington et al., 1999). The applet can run within a Web browser or through a spe-
cial applet viewer that is included with Java Runtime Environments. With either inter-
face, the presentation tasks and simple data processing occur on the client side—that
is, on the user’s platform/system/device. On a Web browser, it is embedded and
enabled with special HTML-like applet tags. Since direct or indirect communication
is established with the server and data, applets allow most of the data processing to
take place on the client computer. This can potentially reduce the processing load on
the server and support a higher degree of availability to other users (Limp, 2001).
Unfortunately, the applet implementation of a two-tier architecture has some draw-
backs. If the size of an applet and/or its dataset is too large, computational processing
will be slow and may tax the client computing device. The downloading time and
functional performance can also be major concerns. These issues may effectively turn
the client-side system into an overtaxed fat client, and even paralyze the client
machine (Huang and Worboys, 2001). Moreover, the security of the data and files
manipulated by the applet on the client may be an issue. This is a consideration for
sensitive GIS and RS datasets and applications.

In a three-tier architecture, the presentation component (the first tier) is also
handled on the client side, the logic component (the second tier) resides on the server
side, and the data component (the third tier) resides on a stand-alone data server (Peng
and Tsou, 2003). Examples of three-tier architecture systems typically include Web
applications using server-side Java applications, or Java servlets (Fig. 4, right). Much
of the functionality of these server-side components involves marshaling data,
requests, and responses. Like the Java applet extending the capabilities of a Web
browser (or a stand-alone applet viewer) on the client side, the servlet extends the
functionality of the server on the server side (Huang and Worboys, 2001). Applets
“listen” for and respond to client-side messages or requests; and proceed to gather and
process data and execute instructions at the server side according to their programs.
This middle-ware tier is used to process user requests, produce maps, and manage
server tasks (Tsou et al., 2002). With it, complex data processing and data security can
take place away from the client. After execution, the results, or other output, are gen-
erated and transferred to the client (Tsou and Buttenfield, 2002). Unlike in a two-tier
architecture, nearly all of the computation and data processing is performed on the
server side in a three-tier architecture. Because of the lack of any significant process-
ing and execution at the client side, the client is usually referred to as a “thin client.”
A thin client only manages the presentation component of the three-tier architecture.
This generally entails a networked computing device providing a user interface and a
means to receive and/or display server-generated output.

Three-tier architectures can be more flexible than two-tier architectures. Three-
tier architectures can provide flexible access to an ever-expanding number of datasets,
databases, datastores, or Internet map servers available based on user requirements
(Fig. 4). Unfortunately, three-tier architectures can suffer from too many client
requests for services. This can lead to slow data transfer between clients and servers,
and unacceptably slow interface display and interactivity. In the context of Mobile

WEB-BASED FRAMEWORK 287

GIS, this can take the form of painfully slow updates of sever-generated map imagery.
Table 2 summarizes some advantages and disadvantages of the two architectures dis-
cussed.

CROSS-PLATFORM JAVA FRAMEWORK FOR MOBILE GIS AND
REMOTE SENSING APPLICATIONS

Programs developed for the Java programming language should be able to be
compiled and executed on any machine. Therefore, it is an ideal tool for cross-
platform and distributed systems. These advantageous factors led several major GIS
vendors to develop Java-based tools and solutions for serving geospatial data to Web
users. These tools include ESRI ArcIMS, Autodesk MapGuide, Intergraph GeoMedia
WebMap, and MapInfo MapXtreme. However, very little formal GIS research has
been conducted on comparing cross-platform Java applications, and their differences
and limitations (Tsou, 2004b).

Currently, there are three main Java framework technologies within the Java 2
Platform: Java 2 Micro Edition (J2ME), Java 2 Standard Edition (J2SE), and Java 2
Enterprise Edition (J2EE). The Java 2 Standard Edition is a framework of Java pro-
gramming tools and libraries in support of general-purpose, personal, and client-side
application development. J2SE is the most common edition of the Java 2 framework.
Many useful Application Programming Interfaces (APIs) developed for J2SE are fre-
quently employed in Internet GIS and online mapping applications. These libraries
include Java Advanced Imaging APIs, Java 2D APIs, and Java 3D APIs.

Table 2. Two-Tier versus Three-Tier Java Architectures

 Three-tier architecture Two-tier architecture

Advantages

1. Robust server-side Java solution
2. Easy to develop and deploy
3. Allows complex processing to take place

at the server side
4. Data security is guaranteed
5. Adherence to distributed GIS standards

and compatible with most modern
browsers

1. Robust client-side Java solution
2. Advanced graphical user interface (GUI)
3. High-quality image rendering possible
4. Unlimited user interaction with client-side

applets and data
5. No need to frequently send and receive

messages across the Internet

Disadvantages

1. Low interactivity level because of a
limited display

2. Can hamper processing with too many
client requests

3. High-bandwidth requirement
4. Substantial data download delays possible

with the ever-increasing size of vector and
raster formats

1. Lack of complex analytical capability at
the client side

2. Difficult to transfer or process large
datasets

3. Difficult to implement
4. Lack of data and software security
5. No adherence to standards

288 TSOU ET AL.

The Java 2 Enterprise Edition is a Java framework that provides application
development tools and libraries to support server-side, institutional, and IT-based
application development. Software programmers can use J2EE Enterprise JavaBean
class libraries to create re-usable distributed components for different Web Services
and Business-to-Business (B2B) applications. Several key technologies of the Enter-
prise Edition include the integration of Java and Extensible Markup Language
(XML), Java Servlets technology, and Enterprise JavaBeans.

The Java 2 Micro Edition is a Java framework that provides application develop-
ment tools for small computing devices including cellular phones, pagers, smart
cards, and Personal Digital Assistants (PDAs)/handheld computers. An example of
this technology includes Java Card technology, which enables very small footprint
Java programs to execute on smartcard and other handheld devices with very limited
Random Access Memory (RAM). J2ME also supports small device “profiles.” These
are stated minimum collections of Java API libraries for each particular device or
application. These specifications minimize program and runtime size while providing
enough tools and libraries for embedded application development. An example
Java profile includes the Mobile Information Device Profile (MIDP) which specifies
a standard set of APIs for wireless communications and mobile devices (Sun
Microsystems, 2000).

The performance of similar GIS and remote sensing applications on three Mobile
GIS platforms using Java cross-platform development tools is examined. The first test
case involves a execution of Java applets on a notebook PC platform running the
Windows XP Operating System (OS) through a modern Java-enabled Web browser.
The second test case entails a Pocket PC running the Windows CE OS and a third-
party Java Virtual Machine (JVM) plug-in called “CrEme,” developed by NSIcom
Ltd (http://www.nsicom.com). The JVM on the Pocket PC enables Java application
execution on Windows CE-based computing devices. Other JVM plug-ins are avail-
able for Pocket PCs, Palm OS–based devices, and other mobile computing devices.
CrEme was specified for the Mobile GIS application because it is able to provide a
full range of Java capabilities including Remote Method Invocation (RMI) for client-
server application development; Java Native Methods (JNI) for embedding program-
ming code in other languages within Java; and the Swing 1.1 library for advanced
GUI development. The CrEme JVM plug-in was also noted for being very stable and
robust. The third test case involves the development of a Java map viewer for the
mobile phone platform utilizing the J2ME Wireless Toolkit. J2ME Wireless Toolkit is
a set of software tools and libraries for developing wireless Java applications that are
based on J2ME’s Connected Limited Device Configuration (CLDC) and Mobile
Information Device Profile (MIDP). These are a set of standards that support the
small and limited computing environments of small wireless technology such as
mobile phones. The applications developed using the toolkit include distributed appli-
cations that can be executed on mobile phones and PDAs.

There are similarities and differences between the Java programming frame-
works and their corresponding API libraries for the three different platforms
addressed. An example of the similarities includes the Java Swing API library for
advanced GUI development. J2ME (used in the Pocket PC and mobile phone test
cases) and J2SE (used in the notebook PC test case) utilize the same set of Java
Swing APIs for GUI development. Since the CPU on a mobile phone or Pocket PC is

WEB-BASED FRAMEWORK 289

significantly less powerful than a CPU on a notebook PC, the same API libraries used
in identical applications for both platforms will appear to execute more slowly on the
Pocket PC or mobile phone. Further considerations of the Java J2SE and J2ME appli-
cation development frameworks, as it applies to Mobile GIS application develop-
ment, include the following.

1. Most Pocket PCs have restricted processing power. The CPU power of a typi-
cal Pocket PC is about 200 MHz, as opposed to a notebook PC with a more powerful
2GHz CPU. To overcome this shortfall, it is necessary to choose to implement only
the most lightweight and efficient API libraries that best support the required applica-
tion features. This software engineering task should be done before the development
process begins to ensure smaller application footprints and better performance. In the
context of the development of GIS or remote sensing data viewers, best practices
include utilization of wireless client-server technologies and using Web services to
implement complex GIS/RS procedures/functions. A solution developed for the
Pocket PC or mobile phone platforms should only entail simple map display function-
ality on the client side. Finally, consideration should be given to certain aspects of the
client application program design. Java Garbage Collection (GC) is a runtime feature
that can be programmatically or automatically called to de-allocate references to
unused physical memory in the computing device. GC frees up memory for applica-
tion use. Unfortunately, this process can be taxing on a mobile computing system with
minimal CPU resources. Frequent and unnecessary GC calls are computationally
expensive, and may render an application unacceptably slow and inefficient for prac-
tical use.

2. There are many other significant memory constraints on Pocket PC and
mobile phone platforms. Mobile computing devices have very limited storage and
runtime memory. This constrains the developer to a small runtime environment and
application footprint. Even after choosing lightweight libraries, the developers should
carefully select the packaging solutions for application deployment. Part of this
entails only including Java libraries and files that are actually implemented in the
application. Additional considerations should also be made for the partitioning of the
applications across the architecture of the whole system. By diligently allocating
components of the application solution between servers and clients, additional mem-
ory savings can occur while preserving the functionality of the software.

3. The user display sizes vary greatly between the mobile phone, Pocket PC, and
notebook PC platforms (Fig. 1). One of the most challenging aspects of creating
cross-platform Mobile GIS solutions is addressing the user interface and data display.
Screen real estate on the smaller platforms, as well as duplicating user interface func-
tionality across all three platforms, are significant considerations. Traditional, large,
and graphic-intensive GUIs are not possible or practical with the smaller mobile com-
puting platforms. Creation of user-friendly interfaces for Pocket PC and mobile phone
application solutions require implementation of such space-saving GUI features/tools
as menus, list boxes, combo box dialogs, and screen tabs. The user interface for data
browsers and simple map functions need to be carefully considered in application
development for GIS/RS applications for mobile computing devices.

In summary, user interface simplification is one of the most important design
considerations when developing Mobile GIS solutions on smaller computing devices
such as the Pocket PC and mobile phones. With careful selection of lightweight API

290 TSOU ET AL.

libraries and a simplified GUI design, Java programming technology can be an effec-
tive tool to build robust and user-friendly GIS application tools for basic GIS/RS data
display and analysis functions on mobile computing devices. The following sections
describe three different Java implementations of Mobile GIS application solutions for
GIS/RS functionality. These prototype solutions have been tested for environmental
monitoring and natural resource management applications to demonstrate their poten-
tial capabilities.

CASE STUDY 1: J2SE APPLICATIONS ON NOTEBOOK PCS

The first study case entails the development of a Java Web-based imagery analy-
sis application for a notebook PC using the Java 2 Standard Edition (J2SE) applica-
tion framework. J2SE is the most popular framework for Java development of Web-
based GIS and RS applications. The J2SE Java Development Toolkit (JDK) provides
robust and well-defined APIs for geospatial data and digital image processing appli-
cations. Certain relevant API libraries include the Abstract Windows Toolkit (AWT),
the Java 2D, and the Java Advanced Imaging (JAI) libraries. These API libraries pro-
vide flexible tools for integrating powerful image manipulation and GIS functionality
within a software application solution (Sun Microsystems, 1999). The notebook PC
application prototype adopted the newest Java 2D and JAI API libraries to include
support and functionality for complex image processing tasks including image warp-
ing, image compositing, and image transparency. The Java 2D API library addresses a
wide range of graphical, image, and text manipulation applications. The JAI API
library focuses on fundamental digital image processing functionality (Rodrigues,
2001).

The JAI API library was used to develop image manipulation functions including
semantic zooming, smooth panning, geo-linking viewers, contrast/brightness adjust-
ment, minimum-maximum stretching, feature edge detection, and toggling of individ-
ual RGB bands. Custom change detection functionality was also developed for
monitoring, detecting, and interpreting changes to natural wildlife habitats over time
using RS imagery. Functionality for user-digitized polygons was also developed for
the identification and analysis of changes at specific land areas. This feature enables
the end user to identify critical areas of change, such as newly burned areas. Change
detection is also possible with these tools because they make it possible to compare
the shapes and sizes of digitized polygons for different temporal periods.

The test bed implementation was focused on identifying change under rapidly
changing habitat conditions including non-native plant invasion, fire and post-fire
succession, and recreation and transportation-related impacts to the physical land-
scape (Stow et al., 2001). All of these functions were accessible using a standard Web
browser as an interface to a suite of image processing and GIS tools. One such tool,
the Image Swipe Java Applet, is provided as an example in Figure 5.

The Image Swipe Tool was designed for Web-based GIS and RS applications. It
was developed for flexible comparative analysis of overlaid geographically registered
multi-temporal imagery. It enables the user to view specific portions of the layered
top and bottom images at the same time using a vertical or horizontal swipe tool
(Fig. 6). The swipe tool slider functions like a curtain and reveals different imagery
separated by a thin vertical or horizontal slider bar. A user can manipulate the swipe

WEB-BASED FRAMEWORK 291

to comparatively reveal different portions of the overlaid imagery, thereby aiding in a
visual change detection analysis. In the test bed example, users were able to compare
land cover changes between 2000 and 2001 using ADAR imagery (Fig. 6). Zoom and
pan functionality was also available and implemented with a rectangular yellow zoom
box tool.

Portions of the Java programming code used to implement the Java Image Swipe
Tool are presented below for illustrative purposes:

int swipeWidth; //For horizontal swipe
int swipeHeight; //For vertical swipe

public float horizontalSwipe(float x) {

swipeWidth = (int)(x * getSize().width);
repaint();
return x;

}
public float verticalSwipe(float y){

swipeHeight = getSize().height - (int)(y * getSize().height);
repaint();
return y;

}
public void paint(Graphics g) {

g.drawImage(bottomImage,0, 0, this); //Draw the bottom image
//Draw the portion of the top image with horizontal swipe
g.drawImage(topImage, 0, 0, swipeWidth, imageHeight, 0, 0,
swipeWidth, imageHeight, this);

Fig. 5. The Image Swipe Java applet [http://map.sdsu.edu/arc/imgswipe].

292 TSOU ET AL.

//Draw the portion of the top image with vertical swipe g.
drawImage(topImage, 0, 0, imageWidth, swipeHeight, 0, 0,
imageWidth, swipeHeight,this);

}

The code for the applet utilizes the horizontalSwipe and verticalSwipe methods to
track the position of the swipe line in order to support client display and user interface
functionality. The swipeWidth and swipeHeight variables store the size of the visual
areas covered by each side of the swipe lines in order to fill the user display. The paint
method facilitates generating and updating the client display based on user input.

In general, Java programming for notebook PC applications is relatively easy and
straightforward. The framework provides an effective tool for development of GIS/
RS applications. It should also be noted that any notebook computer with an appropri-
ate Java runtime, regardless of its native operating system, should be able to execute
this Java Swipe Tool applet.

It should be reiterated that great consideration must be made regarding the ver-
sion of the Java Runtime Environment available on the client-side mobile computing
device. If the appropriate version of the JRE and its corresponding Java Virtual
Machine is not available on the client side, the Java applet may not have the appropri-
ate resources to function on the client mobile computing device. To address these
issues, hardware and OS-specific JREs or Java Runtime Web browser plug-ins can be
downloaded for free at Sun Microsystem’s Website (http://java.com/en/). Many newer

Fig. 6. The Java Imagery Change Detection Function.

WEB-BASED FRAMEWORK 293

Web browsers also have built in support for the newer versions of the Java Runtime
when they are installed on client computing devices. Additionally, many applets and
browsers have support for on-demand updates and installation of appropriate Java
runtime resources.

CASE STUDY 2: J2ME ON THE POCKET PC PLATFORM USING
THE CrEme JVM PLUG-IN

The second study considers the development of a Java Web-based imagery analy-
sis application for the Pocket PC platform utilizing the Java 2 Micro Edition (J2ME)
application development framework. Java development of Mobile GIS application
tools for the Pocket PC platform and the Windows CE OS is challenging given the
fact that native Java support is not available on the system. To address this issue, a
compatible Windows CE OS–specific Java runtime is required. One such solution
entailed the use of the CrEme third party compact runtime application for the Win-
dows CE OS of the Pocket PC platform. The CrEme application tool was selected for
its robust support of many Java API libraries and functionality that are useful for
Mobile GIS development. The CrEme tool includes support for Remote Method
Invocation (RMI) functionality, and many advanced user interface and image display
API libraries. These include the JNI API, the Swing 1.1 API, the Tiny AWT API, and
the Truffle graphical toolkits API. A CrEme Web browser plug-in, which functions as
an embedded JVM for the Pocket version of Microsoft Internet Explorer, is also
included with the application package. With this plug-in, compatible Java applets can
be executed through the Pocket Internet Explorer Web browser. Figure 7 compara-
tively illustrates an identical image analysis applet executing on Web browsers on the
Pocket PC and Notebook PC platforms.

Fig. 7. Crossing-platform Java Web Applet execution: pocket PC (left) and notebook PC
(right).

294 TSOU ET AL.

Because of Java’s emphasis on cross-platform functionality, Java source code
modifications that are required for multiple platform/platform deployment are gener-
ally minimal. Java source code originally written in the J2SE framework for the note-
book PC was modified to accommodate the display, functionality, and memory
limitations of the Pocket PC platform using the J2ME framework. The resulting Java
applet for the Pocket PC platform was packaged and deployed as a downloadable
Java Archive (JAR) file.

J2ME framework–based applications can integrate newer and existing API
classes for development of future Internet-based GIS and RS applications on the
smaller platforms. Figure 7 illustrates the differences between the same Mobile GIS
image analysis application for the Pocket PC and notebook PC platforms. Typical
Pocket PC devices have a significantly smaller screen display area (320 × 240 pixels)
compared to standard notebook PC display screens (1024 × 768 pixels). Because of
this, usability of the GUI can become an issue as noted in the figure. The Pocket PC
version of the applet on the left side of the figure illustrates that the user must rely on
the scrollbars to view the entire GUI display area which is readily visible on the note-
book PC version of the Mobile GIS application on the right.

Figure 8 illustrates a GUI design that is better suited for user interaction and data
display on a Pocket PC platform compared to the previous example. This is noted by
the lack of having to use scrollbars to view the GUI and data display in the Pocket PC
version of the application. Additionally, the form and functionality of the original
notebook PC version appears to be well preserved in its implementation on the Pocket
PC platform.

Other programming frameworks exist for the creation of Mobile GIS applications
on small platform computing devices. These frameworks include the Palm Conduit

Fig. 8. Crossing-platform Java Web Applet execution: pocket PC with improved GUI (left) and
notebook PC (right).

295 TSOU ET AL.

Development Kit (CDK) for Palm OS platforms and Microsoft’s .NET Compact
Framework for Pocket PC platforms.

The .NET Compact Framework is a major competitor to the J2ME application
development framework, and is designed to handle XML Web services messaging.
By supporting XML messaging, the Compact Framework can be utilized to develop
thin client applications that can employ the many public and private Web services and
distributed computing resources currently available. On the surface, this may appear
to be an ideal framework for Mobile GIS application development. However, the
.NET Compact Framework (CF) is not a true cross-platform solution and is currently
limited for development of Windows CE OS–based device applications. J2ME, on the
other hand, provides a better solution for the development and deployment of GIS/RS
applications on a Mobile GIS system.

CASE STUDY 3: MOBILE PHONE APPLICATION
DEVELOPMENT USING THE J2ME WIRELESS

TOOLKIT FRAMEWORK

The third case study entails a J2ME wireless GIS data viewer running on a
mobile phone platform. Java was utilized to enable GIS data query, display, and
manipulation on a mobile phone display. This was demonstrated with GIS data con-
sisting of ESRI Shapefiles.

In order to access GIS data, the data must be stored on a remote Web server.
This is because the data are often too large to store within the mobile phone. Instead,
the mobile phone is used as a dynamic data viewer that can be used to query, down-
load, display, and manipulate portions of the user-required GIS data. In order to
enable this functionality on a memory, processor, and display-constrained computing
device such as a mobile phone, an extremely robust and compact application develop-
ment framework is required. In the case of the wireless GIS data viewer, the J2ME
Wireless Toolkit framework was adopted. Using this application framework, a GIS
MIDlet was developed for the mobile phone platform. A MIDlet is a compact Java
file which conforms to the Mobile Information Device Profile (MIDP) for extremely
small computing devices like mobile phones (Riggs et. al, 2001). MIDlets objects
extend the Javax.microedition.MIDlet API class and contain other special APIs
for development over wireless communications and on mobile devices (Sun
Microsystems, 2000).

Portions of the Java programming code used to implement the wireless GIS data
viewer application are given below for illustrative purposes:

import Javax.microedition.midlet.MIDlet;
import Javax.microedition.lcdui.*;
public class GIS extends MIDlet implements CommandListener {

boolean firstTime = true;
Viewer view;
protected void startApp() {

if(firstTime){
view = new Viewer();

firstTime = false;
}

display.setCurrent(view);

WEB-BASED FRAMEWORK 296

}

protected void destroyApp(boolean unconditional) {

notifyDestroyed();

}

protected void pauseApp() {

}

}

The first two lines of the Java code specify the specialized API class libraries for
mobile application development. The Javax.microedition.MIDlet class library defines
three abstract methods that must be defined for any implementation of a MIDlet. The
methods include startApp, pauseApp, and the destroyApp methods. When a user starts
an application on a MIDP-conforming device, the startApp method of the MIDlet
application is called by the application. When the user temporarily suspends an appli-
cation, presumably to handle an incoming mobile phone call, the pauseApp method is
called. When the user exits the Java application, the destroyApp method is called to
facilitate necessary housekeeping of the mobile phone’s computing system and
resources. Figure 9 illustrates the wireless GIS viewer MIDlet application executing
on the Java Wireless Toolkit’s mobile phone simulator.

A major difference between the Pocket PCs and mobile phone platforms is the
appearance and functionality of the user interface. On a standard notebook PC or
Pocket PC, users can manipulate mouse cursor devices or use a touch-sensitive dis-
play panel to manipulate graphical data such as GIS maps or RS imagery. On a
mobile phone, the user interface is far more limited. Input is usually limited to some
function keys and a number pad. Due to this constraint, several number keys were
employed for user input. This enabled some basic map display and movement func-
tionality on the mobile phone. The number keys were mapped to these functions on
the mobile phone:

Fig. 9. Demonstration of a map pan function on a mobile phone application test bed.

297 TSOU ET AL.

• Key 1 was mapped to the zoom-out function. (The zoom-scale was set to
change by a factor of 1.5 for each use of this function.)

• Key 0 was mapped to the zoom-in function. (The zoom-scale was set to
change by a factor of 1.5 for each use of this function.)

• Key 5 was mapped to the pan function.

• Key 2 was mapped to the move up function.

• Key 8 was mapped to the move down function.

• Key 4 was mapped to the move left function.

• Key 6 was mapped to the move right function.

• Key # was mapped to a toggle control for enabling and disabling the move
function.

When the move function is enabled, the zoom and pan function will be disabled
and a “+” symbol will appear at the center of the image display as a reference point
for user manipulation of the feature data that are displayed on the display. When the
move function is disabled, the zoom and pan functions will be re-enabled.

Figure 10 illustrates the use of the wireless GIS data viewer for on-demand
downloading of GIS data via a menu-driven user interface on the mobile phone over a
wireless network. This approach offers an improved solution for data viewing since
data do not need to be stored on the client. The data can be queried and retrieved
based on user requirements. This can result in substantial savings of client memory.
Additionally, this may offer the user a more flexible means to obtain data since the
data that are available for viewing may be updated, improved, or supplemented on the
server side.

There are issues and considerations to take into account associated with the
wireless GIS data viewer. The packaging of GIS data elements such as point, line,
and polygon features, for robust transport over a mobile phone wireless network is
difficult due to the existence of many different standards and protocols for data

Fig. 10. Demonstration of GIS data download onto a mobile phone using a menu-based user
interface.

WEB-BASED FRAMEWORK 298

organization and transfer. Next, GIS data can be very large and the transmission may
be cut short by the memory and processing constraints of the client mobile phone
device, or by the wireless mobile phone network. Finally, end users may incur signif-
icant costs associated with transferring data with their wireless communications
plans. The additional costs may be in addition to their regular service charges.

CONCLUSION AND FUTURE WORK

Reliable geospatial information management tools with visual and analytical
capabilities are in great demand to maximize the use of geospatial data in facilitating
decision making processes (Gahegan, 1998; Brown, 1999). With the rapid develop-
ment of wireless and mobile technology and applications, comprehensive Mobile GIS
applications are requested by many GIS and RS users. With the arrival of high-
bandwidth wireless mobile networks, these networks have been identified as possible
data transport mechanisms for Mobile GIS applications. Challenges still remain for
the development of robust and user-friendly Mobile GIS applications.

Heterogeneous operating systems of different mobile devices, including the
Windows CE OS, the PalmOS, the Symbian OS, and the Java Phone OS, are addi-
tional hurdles to development of robust cross-platform applications. A single Mobile
GIS application developed for several differing platforms and operating systems can
be extremely expensive and time consuming. Each individual platform and OS may
require a nearly complete rewrite of programming code in order to duplicate applica-
tion functionality and specified requirements. To address this issue, the GIS software
industry and mobile computing device vendors need to establish a community-based
standards organization for the future development of Mobile GIS applications. Pres-
ently, OpenGIS Location Services (OpenLS) specifications by the Open GIS Consor-
tium (OGC, 2003a) offer a good example for setting mobile application standards. In
this instance, the organization addresses Location-Based Services (LBS) standards for
Mobile GIS and other applications. They have specified the adoption of XML-based
Abstract Data Types (ADT) and the GeoMobility Server for cross-platform and cross-
device functionality (OGC 2003a, 2003b). Similar standards initiatives need to be
pursued for field-based Mobile GIS and mobile RS applications.

Another consideration is the inadequate bandwidth of current wireless communi-
cations technology. This limits the feasibility of the development of GIS and RS
applications due to their relatively large data sizes. Current wireless technology, in the
best-case scenario, can only provide up to 1 Megabit per second of data transfer via
an advanced cellular mobile phone network like CDMA or newer 3G systems. Most
GIS and RS applications require high-speed network connections since GIS and RS
imagery data are routinely 10–500 MB in size. Because of these considerations, and
the general lack of supporting application tools and mobile communications infra-
structure, it is currently difficult to access available GIS/RS data. Pocket PCs and
similar devices are in a more advantageous situation when it comes to bandwidth con-
siderations due to their ability to use high-speed wireless protocols and devices such
as IEEE 802.11 (Wi-Fi) and Bluetooth. IEEE 802.11 technology is very robust and
well utilized, and can enable wireless data transfer at a rate of 11 megabits per second
to 54 megabits per second in the ideal situation. WiMAX is an emerging IEEE 802.16
standard for broadband wireless wide-area network (WWAN) or Metropolitan area

299 TSOU ET AL.

network (MAN) applications. WiMAX can provide a larger coverage of service area
than Wi-Fi. Its communication signals can cover a range of 4–6 miles (up to 20 miles
for the long-distance setting). To address the wireless communication issue, the
development of Mobile GIS applications make it possible to robustly handle erratic
signal coverage, with features such as download restart, synchronization, and contin-
uation after line drops. The ideal solution is to provide seamless communication
merged from cellular mobile coverage and the Wi-Fi/WiMAX combination.

Another challenge is the usability of Mobile GIS and remote sensing applica-
tions. Most Mobile GIS devices are constrained to a platform with a limited visible
screen area, memory, computational power, and communications ability. Much
research must go into human factors and GUI design. Different platforms may require
GUI modifications to best serve its target user needs. Some solutions can include
utilization of specialized input systems, including the touch-sensitive display panels
on Pocket PCs and Tablet PCs, or voice-recognition technology on Pocket PC and
mobile phone devices. Recent innovations in consumer-grade GPS automobile navi-
gation systems may offer hints to solutions for addressing these issues in Mobile GIS
applications.

Potential applications of Java framework–based programs for the display and
manipulation of GIS and RS data were examined. Visual and analytical functions of
applications developed for three different hardware platforms were analyzed and dis-
cussed. These application tools examined how users can interactively access, navi-
gate, and explore visual RS and GIS data over mobile computing devices. Although
the development of Mobile GIS and RS applications is at its infancy, there is great
potential for Java framework-based analytical tools in several application areas
including environmental monitoring, natural resources management, emergency man-
agement, and homeland security. Mobile GIS data collection and geospatial analysis
over Internet connections can result in cost savings, the reduction of manpower
requirements for field monitoring tasks, and encourage the sharing of analytical tools.

Other alternative approaches for Mobile GIS applications can be combined with
the Java platform. Scalable Vector Graphics (SVG) and mobile web services are two
promising future technologies for mobile GIS and remote sensing. SVG is an XML-
based, two-dimensional vector graphics media format specified by the W3C in 2001
(version 1.0) and in 2003 (version 1.1) (W3C, 2003). There are three types of SVG
probiles: SVG Full, SVG Basic, and SVG Tiny. SVG Full is suitable for desktop or
laptop PCs. SVG Basic (smaller than SVG Full) is designed for Pocket PC or PDAs.
SVG Tiny is designed for mobile phones. The advantage of mobile SVG (Basic and
Tiny) compared to other graphic formats is that it can provide a compact, multimedia-
enabled vector display format. SVG images are scalable and dynamic, and can be
used within the Java platform. For example, SVG Tiny can become one of the major
display formats for J2ME applications.

Mobile web services are an extension of general web services that are built upon
XML; Simple Object Access Protocol (SOAP); Universal Description, Discovery,
and Integration (UDDI); and Web Services Description Language (WSDL). Mobile
web services can combine multiple functions and customizable information provided
by web service providers for different mobile applications and users. The advantage
of adopting web services for mobile GIS application is that web services can provide
flexible combination of multiple web computing techniques with modern enterprise

WEB-BASED FRAMEWORK 300

GIS architecture. The contents of mobile web services include short messaging ser-
vices (SMS), multimedia messaging services (MMS), and location-based services
(LBS). Most mobile web services rely on server-side computing power significantly.
For mobile GIS or LBS tasks, web services work like client-side terminals, with more
flexible choices of GIS functions provided by remote web servers rather than running
GIS functions locally. This is quite different from Java platform applications, which
utilize client-side (mobile devices) computing power for major GIS works.

To summarize, future development of Mobile GIS and RS applications should
entail better user interface and human-factor design, and development of more
advanced analytical tools and capabilities, including dynamic sketching, geometric
calculation, vector overlay, and image feature classification. With its features and
capabilities, the Java framework may offer a robust and appropriate cross-platform
solution to facilitate the development of the next generation of Mobile GIS and RS
applications and tools. Moreover, the cross-platform nature and accessibility of appli-
cations developed within the Java framework may broaden the scope and appeal of
Mobile GIS, RS, and other geospatial tools and applications for the public at large.

ACKNOWLEDGMENTS

The authors wish to acknowledge that significant portions of the content dis-
cussed herein stem from the research of two projects: “A Border Security Decision
Support System” (NASA REASoN-0118-0209) and “Integrated Mobile GIS and
Wireless Image Web Services for Environmental Monitoring and Management.”
Additionally, the authors wish to acknowledge and express their appreciation of
matching funds received from the National Science Foundation project, “A Scalable
Skills Certification Program in GIS” (NSF-ATE DUE 0401990). Additional acknowl-
edgment is extended to John Kaiser, the REASoN program coordinator, and Douglas
Stow, the REASoN project Principal Investigator. The authors would also like to rec-
ognize Sheth Dhawal and Min Zou, graduate students at San Diego State University,
for their Java programming efforts in support of the research.

REFERENCES

Andrienko, G., Andrienko, N., and J. Carter, 1999, “Thematic Mapping in the Inter-
net: Exploring Census Data with Descartes,” in Proceedings of TeleGeo'99 Con-
ference, Lyon, May 6-7, (1999), Laurini, R. (Ed.), 138-145.

Brown, I. M., 1999, “Developing a Virtual Reality User Interface (VRUI) for
Geographic Information Retrieval on the Internet,” Transactions in GIS,
3(3):207-220.

Coddington, P. D., Hawick, K. A., and H. A. James, 1999, “Web-Based Access to
Distributed High-Performance Geographic Information Systems for Decision
Support,” in Proceedings of the 32nd Hawaii International Conference on
System Sciences, 1999.

Crisp, N., 2003, Open Location-Based Services: Technical Brief (TB1034A),
Huntsville, AL: Intergraph Corporation, White paper [http://www.intelliwhere.
com], accessed on December 16, 2003.

301 TSOU ET AL.

Derekenaris, G., Garofalakis, J., Makris, C., Prentzas, J., Sioutas, S., and A.
Tsakalidis, 2001, Integrating GIS, GPS, and GSM Technologies for the Effective
Management of Ambulances,” Computer, Environment, and Urban Systems,
25:267-278.

Douglas, K., 1996, The JavaTM Platform, Santa Clara, CA: Sun Microsystems, Inc.
[http://Java.sun.com/docs/white/platform/Javaplatform.doc1.html], accessed on
September 24, 2004.

Gahegan, M., 1998, “Scatterplots and Scenes: Visualization Techniques for
Exploratory Spatial Analysis,” Computers, Environment, and Urban Systems,
21(1):43-56.

Gosling, J. and H. McGilton, 1996, The Java Language Environment, Santa Clara,
CA: Sun Microsystems, Inc. [http://Java.sun.com/docs/white/langenv], accessed
on September 24, 2004.

Halfhill, T. R., 1997, “Today the Web, Tomorrow the World,” Byte, 22(1): 68-80.
Hamilton, M. A., 1996, “Java and the Shift to Net-Centric Computing,” IEEE Com-

puter, 29(8):31-39.
Huang, B. and M.F. Worboys, 2001, “Dynamic Modeling and Visualization on the

Internet,” Transactions in GIS, 5(2):131-139.
Intergraph, 2002, Mobile Resource Management, Huntsville, AL: Intergraph Corpo-

ration, White Paper [http://imgs.intergraph.com/freebies/pdfopener.asp?item=
wp&file=WP1020A.pdf], accessed on September 24, 2004.

Jagoe, A., 2002, Mobile Location Services: The Definitive Guide, Upper Saddle
River, NJ: Prentice Hall.

Limp, F. W., 2001, “User Needs Drive Web Mapping Product Selection,” GEOworld,
February 2001, 8-16.

OGC (Open GIS Consortium), 2003a, OpenGIS Location Services (OpenLS): Core
Services (Part 1-Part5). (version 0.5.0), Wayland, MA: Open GIS Consortium,
Inc., OGC-03-006r1.

OGC (Open GIS Consortium), 2003b, OpenGIS Location Services (OpenLS): Part
6—Navigation Services, Wayland, MA: Open GIS Consortium, Inc. (version
0.5.0) OGC-03-007r1.

Peng, Z. R. and M. H. Tsou, 2003, Internet GIS: Distributed Geographic Information
Services for the Internet and Wireless Networks, New York, NY: John Wiley and
Sons, Inc., 710 pp.

Pundt, H., 2002, “Field Data Collection with Mobile GIS: Dependencies between
Semantics and Data Quality,” GeoInformatica, 6(4):363-380.

Riggs, R., Taivalsaari, A., and M. VandenBrink, 2001, Programming Wireless
Devices with the Java 2 Platform, Micro Edition, Boston, MA: Pearson Educa-
tion.

Rodrigues, H. L., 2001. Building Imaging Applications with Java™ Technology:
Using AWT Imaging, Java 2D™, and Java™ Advanced Imaging (JAI), Boston,
MA: Addison-Wesley.

Sadoski, D., 2000, Two Tier Software Architectures. Software Technology Review
(STR) [http://www.sei.cmu.edu/str/descriptions/twotier_body.html], accessed on
September 24, 2004.

Schildt, H., 2004. Java: The Complete Reference, 6/e, Emeryville, CA: McGraw-Hill
Osborne Media.

WEB-BASED FRAMEWORK 302

Shan, Y. P. and R. H. Earle, 1998, Enterprise Computing with Objects: From Client-
Server Environments to the Internet, Boston, MA: Addison Wesley, 448 pp.

Stow, D., O’Leary, J., Coulter, L., Hope, A., and J. Franklin, 2001, Application of
Digital Imaging Technologies for Monitoring and Managing MSCP/NCCP
Reserves, San Diego, CA: San Diego State University, Department of Geog-
raphy, Natural Community Conservation Planning Program Report.

Sun Microsystems, 1998, Java Distributed Computing Technology Further Enabled
by Support from IIOP, Santa Clara, CA: Sun Microsystems, Inc. [http://www.sun.
com/smi/Press/sunflash/1998-07/sunflash.980708.2.html], accessed on Septem-
ber 24, 2004.

Sun Microsystems, 1999, Programming in Java Advanced Imaging, Santa Clara, CA:
Sun Microsystems, Inc., White Paper [http://Java.sun.com/products/Java-media/
jai/forDevelopers/jai1_0_1guide-unc/], accessed on September 24, 2004.

Sun Microsystems, 2000, J2ME Building Blocks for Mobile Device (White Paper on
KVM and the CLDC), Santa Clara, CA: Sun Microsystems, Inc. [http://Java.
sun.com/products/cldc/wp/KVMwp.pdf], accessed on September 24, 2004.

Tsou, M. H., 2004a, “Integrated Mobile GIS and Wireless Internet Map Servers for
Environmental Monitoring and Management,” Cartography and Geographic
Information Science, 31(3):153-165 (the (special issue on Mobile Mapping and
Geographic Information Systems).

Tsou, M. H., 2004b, “Integrating Web-based GIS and On-line Remote Sensing Facili-
ties for Environmental Monitoring and Management,” Journal of Geographical
Systems, 6(2):155-174 (special issue on Web-Based GIS).

Tsou, M. H. and B. P. Buttenfield, 2002, “A Dynamic Architecture for Distributing
Geographic Information Services,” Transactions in GIS, 6(4):355-381.

Tsou, M. H., Guo, L., Stow, D., and J. Kaiser, 2002, Web-Based Geospatial Infor-
mation Services and Analytical Tools For Natural Habitat Conservation and
Management. Final Report For NASA Affiliated Research Center. San Diego,
CA: San Diego State University, July 2002.

W3C, 2003, Scalable Vector Graphics (SVG) 1.1 Specification, Cambridge, MA:
World Wide Web Consortium [http://www.w3.org/TR/SVG/], accessed on
August 20, 2005.

WORA, 2005, “Write Once, Run Everywhere,” Wikipedia: The Free Encyclopedia
[http://en.wikipedia.org/wiki/Write_once,_run_anywhere], accessed on August
20, 2005.

