
1

Tsou, M.H. and Buttenfield, B.P.; 1997 A Direct Manipulation Interface for Geographical
Information Processing. In: Kraak, M.J. and Melenaar, M. (eds.) Advances in GIS Research II: 905-
915. First appeared in Proceedings of the 7th International Symposium on Spatial Data Handling,
Delft, The Netherlands, August 1996: 13B.37 - 13B.47.

A Direct Manipulation Interface for Geographical Information Processing

Ming-Hsiang Tsou and Barbara P. Buttenfield
Department of Geography, University of Colorado, Campus Box 260

Boulder, Colorado 80309-0260, USA
email: tsou@ucsu.colorado.edu, babs@colorado.edu

ABSTRACT

Today the processing and analysis of geographical information is complicated by an increasing
volume of information. We present a system to directly manipulate geographical data by using
object-oriented approaches and graphic user interface (GUI) design. The study concentrates on
vector data and overlay operations. A case study has been conducted by using this system for
potential site selection in the Ellington, Connecticut area. The GUI design of the system uses icons
to represent the geographical data and their operations. Object-oriented approaches are adopted in
establishing a knowledge-based GIS system. This study suggests that the next generation of GIS
user interfaces should provide an intelligent agent to assist users to search, query and operate on
data. Keywords: direct manipulation, object-oriented approach, graphical user interface.

INTRODUCTION

With the rapid growth and development of computer technology and data gathering techniques, GIS
have become more powerful, tremendous and complicated. A dramatic increase in the volume of
geographical information challenges efficient management and analysis of this information.
Processing and analysis of spatial data will be more complicated and difficult in the future. GIS
operations have become incomprehensible for some users. However, many GIS procedures need to
be modified and parameterized by their users, to cope with the complexity of the real world. We
need a more intuitive way to help users work with GIS operators and data.

Recently, the graphic user interface (GUI) has emerged throughout GIS software. Case studies
show that GUI users complete over one third more work per unit time compared with users of
command-line interfaces. (Graham, 1994, p.32) Our approach adopts heuristic methods to improve
the interaction between users and systems. However, most GIS software limits GUI commands to
display of geographical information rather than on processing. As yet, there is no appropriate GUI
designed for the purpose of processing or analysis of geographical data. The reason is that the
nature of geographical phenomena is complicated, and the analysis of geographical phenomena is
difficult to formalize into fixed functions. Introducing object-oriented approaches for spatial and
geographical analysis operations may provide a natural and heuristic design at the conceptual level
(Milne, Milton, and Smith, 1993). Since the processing methods developed by object-oriented
approaches can provide reusable and extensible models, future developers of GIS can improve

2

models developed previously by other geographers or scientists. Thus, the processing of
geographical information will be more sophisticated and powerful.

Object-oriented concepts originate from object-oriented languages. The original object language
was "Simula" developed in Norway in the 1960s (Taylor, 1992). The language was designed to
simulate real world interactions and resolve complex problems. Object-oriented methods have been
applied in a variety of fields such as business modeling, for example to establish the structure of an
organization and the information flows within (Graham, 1994, p.318). In an object-oriented
approach, data and operations are combined. Damage of important data due to unintentional
changes by programming mistakes can be avoided. Spatial data need frequent updates and
transformation to many different formats. One might say they need to be protected from external
intrusion. Another advantage of an object-oriented approach is the reuse of object components.
Object-oriented methods encourage people to retain established application models and improve
upon them. Thus, geographical knowledge can be accumulated and multiplied.

Early studies of object-oriented methods in GIS applied object-oriented programming to specific
applications, such as "object-oriented locational analysis" (Armstrong, 1989). Many geographers
advocated the use of object-oriented approaches for spatial data management (Egenhofer and Frank,
1988) and data modeling (Worboys et al 1990). In cartographic research, object orientation has
been applied to automate "... knowledge-based symbol selection ... for the visualization of univariate
spatial statistical information." (Zhan and Buttenfield, 1995, p.293)

This project adopts a direct manipulation approach to implement iconic processing and analysis.
We apply object-orientation to represent spatial data and GIS operations. According to past
experience, we limit the project scope for the successful development of a knowledge-based system
(Zhan and Buttenfield, 1995). This research uses a small testbed located in Ellington, Connecticut,
and provided with ARC/INFO. We limit the scope of GIS operations to vector data and overlay
analysis. This system has been implemented for a case study to locate a residential site. Although
the object-oriented geographical processing is not comprehensive in this case study, the complete
definition of various spatial relations and GIS operations is the long-term goal.

SYSTEM DESIGN AND IMPLEMENTATION

Vector Data Object
In order to transform geographical data to objects, we need to analyze their data structures. Every
geographical data object has a specific geometric type such as polygon, line or point and a specific
identifying name. For example, public wells are an instance of the "point data" class. Roads are an
instance of the "line data" class. And landuse is an instance of the "polygon data" class. In addition,
the complete object also needs geometric and attribute information. Data objects will be
represented as icons indicating their data type (Figure 1).

The class of "vector objects" is defined as the composite of type, name, geometric data, attribute
data and available operations. There are three subclasses of "vector objects" -- "point objects", "line
objects", and "polygon objects". These subclasses inherit a data structure from their superclass
"vector objects" and add new operations. The differences are illustrated in the boxes labeled "type"

3

and "available operations". Different types of data require different operations. For example, a
"line object" may have a specific "networking analysis" function in its available operations which
"point object" and "polygon object" do not have. The advantage of the definition is to generalize the
set of all possible GIS functions from hundreds of commands into organized sets of functions
appropriate to particular types of data. Object encapsulation allows us to focus on the specific GIS
operations associated with a specific type of data without concern for other non-relevant operations.
Each data object will have an associated icon to distinguish it in the interface.

Vector Data Object
 Vector
Data

Point Data Line Data Polygon Data

The Hierarchy of Vector Data Classes

Type:

Name: Attribute
Data

Available Operations:

Geometric
Data

Drawing

Point Data Object

Figure 1. Vector Data Objects

Instances:
 Public wells

Instances:
 Roads

Instances:
 Landuse

 Instance: Public wells

 PointType:

Name:

Available Operations:

Geometric
Data

 Overlay analysis,

Public wells Public_wells.PAT

Line Data Object

 Line LineType:

Name:

Available Operations:

Geometric
Data

Roads Roads.AAT

 Instance: Roads

 Networking analysis,
 Overlay analysis, Drawing

Polygon Data Object

PolygonType:

Name:

Available Operations:

Geometric
Data

Landuse Landuse.PAT

Overlay analysis,

 Instance: Landuse

 Overlay analysis, Drawing

 PointType:

Name: Attribute
Data

Available Operations:

Geometric
Data

 Overlay analysis, Drawing

Type:

Name:

Available Operations:

 Networking analysis,

Attribute
Data

Geometric
Data

 Overlay analysis, Drawing

 PolygonType:

Name: Attribute
Data

Available Operations:

Geometric
Data

Overlay Operation Objects
It is possible to represent operations as objects. To convert a GIS operation to an object format is
more difficult than a data-to-object conversion because an operation is not an item in the same sense
as a data item. Operations are composed of algorithms and procedures. In this research, every
overlay operation will be represented as an object which consists of specific algorithms, procedures,

4

and associated operation parameters. The elements of an operation object include a function name,
the algorithm code and parameters. The object data structure will be filled at execution time by
pointers to input and output data objects. Eight operations will be included in this case study. Each
has an icon whose image indicates graphically the meaning of the operation. The operations are
executed by direct manipulation, by selecting the icon identifying the object.

The Hierarchy of Overlay Operation Classes

Overlay operation
for a single vector object

Output
data:

Function name:
Input data: Criterion:

Parameters:

Reselect Function name:
Input data: Criterion:

Parameters:

Reselect

Logical query expressions

None
Output
data:

Buffer Function name:
Input data: Criterion:
Parameters:

Buffer_distance or
Buffer item or Buffer table

Buffer
None

Output
data:

Erase

Update

Function name:
Input data:
Associate data:

Criterion:
Criterion:

Parameters:

Function name:
Input data:
Associate data:

Criterion:
Criterion:

Parameters:

Erase

Poly
None

Type, fuzzy_tolerance

Update
None
Poly

Output
data:

Output
data:

Identity

Intersect

Union

Clip

Function name:
Input data:
Associate data:

Criterion:
Criterion:

Parameters:

Function name:
Input data:

Associate data:
Criterion:
Criterion:

Parameters:

Function name:
Input data:
Associate data:

Criterion:
Criterion:

Parameters:

Function name:
Input data:
Associate data:

Criteria:
Criteria:

Parameters:

Type, fuzzy_tolerance, join

Fuzzy_tolerance, join

Type, fuzzy_tolerance

Identity
None
Poly

Intersect
None
Poly

Union

Poly
Poly

None
Poly

Clip

Output
data:

Output
data:

Output
data:

Output
data:

Figure 2. Overlay Operation Objects

Overlay operation

Overlay operation
for a single vector object

Reselect

Buffer

Erase
Update
Identity

Intersect
Union
Clip

Overlay operation
for multiple vector objects

Instances: Instances:

Function name:
Input data:
Associate data:

Criterion:
Criterion:

Parameters:

Output
data:

Overlay operation
for multiple vector objects

Type, fuzzy_tolerance, join

Type, fuzzy_tolerance, boarder

Function name:

Input data: Criterion:

Parameters:

Overlay Operation

Output
data:

Algorithm

AlgorithmAlgorithm

Reselect

Buffer

Erase

Update

Identity

Intersect

Union

Clip

5

In Figure 2 "overlay operations" form a class defined as the composite of "function name",
"algorithm", "input data and criteria", "output data", and "parameters". Overlay operations" can be
divided into two subclasses, "overlay operations for a single vector object" and "overlay operations
for multiple vector objects". "Reselect" and "buffer" operations are instances of the first class as
these operations are performed on a single data object. The second subclass adds "associate data"
into its data structure because this class needs to process two data objects at the same time. Its
instances include "erase", "update", "identity", "intersect", "union" and "clip" operations. This
Figure also illustrates the hierarchy of object operations on single and multiple vector objects.

The Display of Data Flow
Major data processing procedures include data input, processing and output. In the interface, icons
representing data and operations link between icons represent the data flow (Figure 3). Notice that
the geometry contained in the data object (point, line or area) is integrated into the icon image, just
as operations icons show simplified representations of the type of encapsulated overlay operator.
Two types of data flow identify operators with single and multiple data inputs (data entry paths).
Direct manipulation allows users to select data and perform operations by combining data icons
with icons of operation objects. Arrows indicate the flow of data from one object to another. Since
objects represent both files and operations, the data flow paths indicate data input from a file,
processing by a particular operation, and output to another file. Data objects are encapsulated with
specific operations, and the interface 'assists' the user by avoiding unlisted (inappropriate)
operations. Visualizing the data flow can help users systematically organize their data and develop
efficient data flows during a GIS analysis.

Erase Update

Input data

Output data

Associate data

Figure 3. Data Flow Examples

Input data Associate data

Output data

Reselect Buffer

Input data

Output data

Input data

Output data

Examples of Single
Data Entry Paths

Examples of Multiple
Data Entry Paths

Graphic User Interface Design
The direct manipulation design provides an efficient interface for user-system communication. The
icons in this system must be simple, easy to operate and to recognize. Following established
principles, the GUI includes a control panel and a display window. A GUI control panel has been
designed by using the "form menu" provided in ARC/INFO's AML library (Figure 4).

6

Control panel functions must meet the requirements of system flow control. These functions
include selecting and deselecting data objects and submitting operation requests such as "overlay"
or "drawing". A data import function lists the available data objects (files) following an external
database directory path. If users select an item from the list (a data object), its data file will be
automatically imported to the system and appear as an icon in the display window. Four buttons
("select data", "deselect data", "overlay", "drawing" and "data import list") are implemented in the
interface. In addition, two system buttons are included, to "restart" and "exit".

The display window consists of a processing box, an operator’s box and a map display box. The
processing box displays the data flow described above, and provides a visualization of the GIS
analysis. The operator’s box displays the icons of overlay operations, highlighting those that are
encapsulated in data objects whose icons are selected. To execute the overlay, users select an operator
and associated parameters. Its icon appears in the processing box; the operation is launched.

The map display box displays the geographical contents of selected data objects (data files) when
the "drawing" request is given. The map display of geographical data can help users see the data
features in operation results. The display window uses an ARCPLOT canvas. Comprehensive
graphic functions in ARCPLOT display icons for data objects, operations and the map features.

Figure 4. The Deployment of the Graphic User Interface

Control Panel

Select data

Deselect data

Overlay

Drawing

Data Import List

Processing Box

Operators

Map Display

Display Window

Restart

Exit

Requests

The deployment of the interface in Figure 4 illustrates how the control panel and display window
appear in a typical situation. A user has selected four items from the data import list (four gray
icons at the top of the display window). The user has clicked on the "select data" button in the
control panel to select one of the four data object icons (gray-filled icon highlighted in black). The
user clicked on the "overlay" button to select one of the related operators in the operator's box, and
an operation icon appears in the display window (white-filled box highlighted in black). The
operation generates a new data object whose icon appears in the processing box (just below the two

7

highlighted icons). This is a single data entry operation. In a previous task, the user has performed
a multiple data entry operation, shown by the cluster of icons on the left side of the display window.
The control of the system relies almost totally on mouse-driven rather than keyboard input. Using
the direct manipulation interface, users can learn and operate the system more easily.

 A CASE STUDY

The case study applies the direct manipulation interface to locate a potential housing site. The
testbed is "Ellington area". The Ellington database has comprehensive vector geographical data.
The criteria for “locating a potential housing site” are listed in Table 1.

 Table 1. The Criteria for Locating a Potential Housing Site
1. The site must be more than 100 meters away from wetland areas.
2. The site must be more than 200 meters away from steel tower power lines.
3. The site must be above the 500 year flood plain.
4. The site must be within 200 meters of a major road.
5. The slope of the site must be less than ten percent.
6. The landuse of the site must be "residential urban area".

Because the potential site must be distant from any of the first three criteria, these three areas can be
spatially identified by a "union" operation combining three different data files. The other criteria
can be met by a series of "intersect" operations. After that, the areas combined from the "union"
operation should be excluded from the areas defined by the "intersect" operation. The "erase"
operation accomplishes this. Figure 5 presents the GIS procedure in this case study. Users can
visualize the flow of data processing and identify the interaction of operations and data from their
respective icons. In effect, the Figure illustrates the chronology of processing steps to create the final
output file. It is a graphical depiction of lineage. To our knowledge, this is the first iconic
representation of lineage whose icons are also direct manipulation tools embedding operators that
perform the analysis. In theory, one should be able to exchange this illustration along with the
object encapsulations to allow another user to replicate the overlay process identically, including not
only the sequence of operators but the parameters associated with each operator as well.

DISCUSSION

A comprehensive GIS software system usually includes hundreds of commands and functions.
Users need to identify which commands are appropriate for their specific data and application. The
interface proposed here uses direct manipulation to simplify operations, and provide a visual record
of a complex GIS task. If users focus on a specific data object, the system can minimize hundreds
of available commands to a smaller number of appropriate operations. In addition, the system can
check the parameters of the relevant operations. Users can concentrate on their data and application
instead of getting sidetracked in finding the right commands.

The interface developed in this research uses object-oriented approaches to formalize the logical
expression: [Select data objects] ---> [Display the available operations] ---> [Select the

8

operation] -->[Execute the operation]. The iconic approach is more logical than a command-line
interface because people can visualize the geographical phenomena “first” and then consider
appropriate operations. Therefore, users can execute GIS operations more naturally and intuitively.

Processing Box

Figure 5. Data Flow of the Case

It is hoped that iconic direct manipulation interface design will improve data sharing and
communication among geographic researchers and scientists. By saving an image of the icons after
a GIS task is complete, researchers can share their models or procedures with other people easily.
Exchange of an iconic representation of the model or procedure should not require transfer of source

9

code, AMLs or other programs, but only exchange of the object encapsulations. Recipient users
can replicate, revise or tailor the model to meet their specific application.

SUMMARY
Recently the GIS community has begun to pay much attention to human-computer interaction (HCI)
in the development of GIS user interfaces (Medyckyj-Scott and Hearnshaw, 1993). Vendors have
begun to develop GUI to improve the competitiveness of their products. For example, ESRI's
ARC/INFO system introduced ARCTOOLs, a menu-driven interface as an easy-and-friendly user
interface. MGE, Intergraph's Modular GIS Environment, uses the menus and icon-based interface
of Windows. ERDAS' Imagine adopts a graphical user interface. Another example of GIS software
which concentrates on the visualization of information processing and analysis is Geolineus, which
is developed by GeoDesigns, Inc. (Lanter, 1994). This study extends Lanter's tools, implementing
direct manipulation into the icons. All of these systems are intended to make GIS operations easy
and self-explanatory for novice users and non-programmers.

Limitations of this study can be discussed from several perspectives. First, the system is specific to
ARC/INFO. The encapsulated objects are not directly transferable to other GIS software. The
programming capability in AML constrains object definitions and their hierarchy. To get around
this, we used a series of global variables to represent the meanings of objects and their relationships.
The GUI design is also constrained by the capabilities of ARCPLOT. For example, in a fully direct
manipulation environment, functions such as "click and drag" would be implemented. At present,
these functions can not be performed in ARCPLOT. Second, from a cognitive perspective, the
iconic language has not been empirically evaluated, and may be insufficient for users to understand
GIS operators and ancillary information. The authors have begun to design experiments to resolve
this issue. Also the classification and hierarchic structure of GIS operations is still preliminary.
Third, this study only focuses on vector data objects and overlay operations. Raster data objects and
other GIS analysis operations such as networking analysis, hydrological analysis and 3D modeling
provide opportunities for further research.

In the past, the development of GIS lacked the application of geographic models that were
complicated and diverse. It was difficult to implement geographic models by procedural
programming languages. In the future, there are many possible directions for the development of
user interface design in GIS. However, the development of a GIS user interface still relies highly on
the progress of hardware and software technologies. "GIS represents the interface between
geography and an external technology, because developments in computers have been the key
enabling factor that has made GIS possible" (Taylor and Johnson, 1995, p.51). The rapid progress
of computer science will always have a significant influence on the development of GIS.

Direct manipulation programming capability may be available in the next generation of GIS
software. Users should be able to implement their geographical models and spatial theories through
object-oriented approaches. The next generation of GIS should provide user interfaces as intelligent
agents to assist users to search, query, and operate the system. Interface design should consider
comprehensive perspectives, including the system operation level and users' recognition and
visualization levels. Future research on GIS system design should focus on the following three
areas-- establishing spatial analysis theories and geographical models in GIS by using object-

10

oriented approaches, deeply exploring the meaning of visual language and the cognition of users,
and designing a comprehensive and intelligent user interface. This study gives a proof-of-concept
for a direct manipulation interface and explores relevant research issues.

ACKNOWLEDGMENTS
This paper represents part of NCGIA Research Initiative 8, “Formalizing Cartographic
Knowledge”, at the National Center for Geographic Information and Analysis, supported by a grant
from the U.S. National Science Foundation (SBR-88-10917). Support by NSF and by the
University of Colorado is gratefully acknowledged.

REFERENCES
Armstrong, M. P., Densham, P. J. and Bennett, D.A.,1989, Object oriented locational analysis,

 Proceedings GIS/LIS '89, Orlando, Florida: 717-726.

Egenhofer, M. J. and Frank, A. U. 1988a. Object-oriented database: database requirements for
 GIS. in Proceedings of the International Geographical Information Systems Symposium:
 The Research Agenda, Vol. II: 189-211.

Graham, I., 1994, Object-oriented Methods. Workingham, England: Addison-Wesley Publishing
Company (2nd Edition).

Lanter, D. P., 1994, A Lineage Metadata Approach to Removing Redundancy and Propagating
Updates in a GIS Database, Cartography and Geographic Information Systems,
Vol. 21(2): 91-98.

Medyckyj-Scott, and Hearnshaw, H. M. Editors., 1993, Human Factors in Geographical
Information Systems. London: Belhaven Press.

Milne, P. , Milton, S. and Smith, J. L., 1993, Geographical object-oriented databases -- a case
 study, International Journal of Geographical Information Systems, Vol. 7(1): 39-55.

Taylor, D. A., 1992, Object-Oriented Information Systems: Planning and Implementation.
New York: John Wiley & Sons, Inc.

Taylor, P. J. and Johnson, R. J., 1995, GIS and Geography, In: Pickles, John (Ed.) Ground Truth:
The Social Implications of Geographic Information Systems, New York: Guilford. Ch. 3: 51-67.

Worboys, M. F., Hearnshaw, H. M., and Maguire, D. J., 1990, Object-oriented data modeling
 for spatial database. International Journal of Geographical Information Systems,
 Vol. 4(4): 369-383.

Zhan, F. B. and Buttenfield, B. P., 1995, Knowledge-based Symbol Selection for Statistical
Information, International Journal of Geographical Information Systems, Vol. 9(3): 293-315.

