Spatial Statistics and Analysis Methods

(for GEOG 104 class).

- Provided by Dr. An Li, San Diego State University.

Types of spatial data

- Points
- Point pattern analysis (PPA; such as nearest neighbor distance, quadrat analysis)
- Moran's I, Getis G*
- Areas
- Area pattern analysis (such as join-count statistic)
- Switch to PPA if we use centroid of area as the point data
- Lines
- Network analysis
\rightarrow Three ways to represent and thus to analyze spatial data:

Spatial arrangement

- Randomly distributed data
- The assumption in "classical" statistic analysis
- Uniformly distributed data
- The most dispersed pattern-the antithesis of being clustered
- Negative spatial autocorrelation
- Clustered distributed data
- Tobler's Law - all things are related to one another, but near things are more related than distant things
- Positive spatial autocorrelation
\rightarrow Three basic ways in which points or areas may be spatially arranged

Spatial Distribution with \boldsymbol{p} value

Nearest neighbor distance

- Questions:
- What is the pattern of points in terms of their nearest distances from each other?
- Is the pattern random, dispersed, or clustered?
- Example
- Is there a pattern to the distribution of toxic waste sites near the area in San Diego (see next slide)? [hypothetical data]

- Step 1: Calculate the distance from each point to its nearest neighbor, by calculating the hypotenuse of the triangle:

$$
N N D_{A B}=\sqrt{\left(x_{A}-x_{B}\right)^{2}+\left(y_{A}-y_{B}\right)^{2}}
$$

Site	X	Y	NN	NND
A	1.7	8.7	B	2.79
B	4.3	7.7	C	0.98
C	5.2	7.3	B	0.98
D	6.7	9.3	C	2.50
E	5.0	6.0	C	1.32
F	6.5	1.7	E	4.55
$N N D=\frac{\sum N N D}{n}=\frac{13.12}{6}=2.19$	13.12			

- Step 2: Calculate the distances under varying conditions
- The average distance if the pattern were random?

$$
\overline{N N D_{R}}=\frac{1}{2 \sqrt{\text { Density }}}=\frac{1}{2 \sqrt{0.068}}=1.92
$$

Where density $=n$ of points $/$ area $=6 / 88=0.068$

- If the pattern were completely clustered (all points at same location), then:

$$
\overline{N N D}=0
$$

- Whereas if the pattern were completely dispersed, then:

$$
\overline{N N D_{D}}=\frac{1.07453}{\sqrt{\text { Density }}}=\frac{1.07453}{0.261}=4.12
$$

(Based on a Poisson distribution)

- Step 3: Let's calculate the standardized nearest neighbor index (R) to know what our NND value means:

$$
R=\frac{\overline{N N D}}{\overline{N N D_{R}}}=\frac{2.19}{1.92}=1.14
$$

= slightly more dispersed than random

Hospitals \& Attractions in San Diego

- The map shows the locations of hospitals (+) and tourist attractions (ρ) in San Diego
- Questions:
- Are hospitals randomly distributed
- Are tourist attractions clustered?

Spatial Data (with X, Y coordinates)

- Any set of information (some variable 'z') for which we have locational coordinates (e.g. longitude, latitude; or x, y)

- Point data are straightforward, unless we aggregate all point data into an areal or other spatial units
- Area data require additional assumptions regarding:
- Boundary delineation
- Modifiable areal unit (states, counties, street blocks)
- Level of spatial aggregation = scale

Area Statistics Questions

- 2003 forest fires in San Diego
- Given the map of SD forests
- What is the average location of these forests?
- How spread are they?
- Where do you want to place a fire station?

What can we do?

- Preparations
- Find or build a coordinate system
- Measure the coordinates of the center of each forest
- Use centroid of area as the point data

Mean center

- The mean center is the "average" position of
the points
- Mean center of X: $\bar{X}_{c}=\frac{\sum x}{n}$
Mean center of Y: $\bar{Y}_{c}=\frac{\sum y}{n}$
$\bar{X}_{C}=\frac{(580+380+480+400+500+550+300)}{7}$
$=455.71$
$\bar{Y}_{C}=\frac{(700+650+620+500+350+250+200)}{7}$
$=467.14$

Standard distance

- The standard distance measures the amount of dispersion
- Similar to standard deviation
- Formula

$$
\begin{aligned}
& S_{D}=\sqrt{\frac{\sum\left(X_{i}-\bar{X}_{c}\right)^{2}+\sum\left(Y_{i}-\bar{Y}_{c}\right)^{2}}{n}} \longleftarrow \text { Definition } \\
& S_{D}=\sqrt{\left(\frac{\sum X_{i}^{2}}{n}-\bar{X}_{c}^{2}\right)+\left(\frac{\sum Y_{i}^{2}}{n}-\bar{Y}_{c}^{2}\right)} \longleftarrow \text { Computation }
\end{aligned}
$$

Standard distance

Forests	X	X^{2}	Y	Y^{2}
$\# 1$	580	336400	700	490000
$\# 2$	380	144400	650	422500
$\# 3$	480	230400	620	384400
$\# 4$	400	160000	500	250000
$\# 5$	500	250000	350	122500
$\# 6$	300	90000	250	62500
$\# 7$	550	302500	200	40000
	Sum of X^{2}	1513700	Sum of X^{2}	1771900
	$\bar{X}_{C}=455.71$		$\bar{Y}_{C}=467.14$	

$$
\begin{aligned}
S_{D} & =\sqrt{\left(\frac{\sum X_{i}^{2}}{n}-\bar{X}_{c}^{2}\right)+\left(\frac{\sum Y_{i}^{2}}{n}-\bar{Y}_{c}^{2}\right)} \\
& =\sqrt{\left(\frac{1513700}{7}-455.71^{2}\right)+\left(\frac{1771900}{7}-467.14^{2}\right)}=208.52
\end{aligned}
$$

Standard distance

Definition of weighted mean center standard distance

- What if the forests with bigger area (the area of the smallest forest as unit) should have more influence on the mean center?
$\bar{X}_{w c}=\frac{\sum f_{i} X_{i}}{\sum f_{i}} \quad \bar{Y}_{w c}=\frac{\sum f_{i} Y_{i}}{\sum f_{i}}$
$S_{W D}=\sqrt{\frac{\sum f_{i}\left(X_{i}-\bar{X}_{w c}\right)^{2}+\sum f_{i}\left(Y_{i}-\bar{Y}_{w c}\right)^{2}}{\sum f_{i}}} \longleftarrow$ Definition
$S_{W D}=\sqrt{\left(\frac{\sum f_{i} X_{i}{ }^{2}}{\sum f_{i}}-\bar{X}_{w c}{ }^{2}\right)+\left(\frac{\sum f_{i} Y_{i}^{2}}{\sum f_{i}}-\bar{Y}_{w c}{ }^{2}\right)} \longleftarrow$ Computation

Calculation of weighted mean center

- What if the forests with bigger area (the area of the smallest forest as unit) should have more influence?

Forests	f(Area)	X ${ }_{\text {i }}$	$\mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\left(\right.$ Area* $^{\text {a }}$)	Y_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$ ($\left.{ }^{\text {rea }}{ }^{*} \mathrm{Y}\right)$
\#1	5	580	2900	700	3500
\#2	20	380	7600	650	13000
\#3	5	480	2400	620	3100
\#4	10	400	4000	500	5000
\#5	20	500	10000	350	7000
\#6	1	300	300	250	250
\#7	25	550	13750	200	5000
$\sum f_{i}$	86	$\sum f_{i} X_{i}$	40950	$\sum f_{i} Y_{i}$	36850

$\bar{X}_{w c}=\frac{\sum f_{i} X_{i}}{\sum f_{i}}=\frac{40950}{86}=476.16 \quad \bar{Y}_{w c}=\frac{\sum f_{i} Y_{i}}{\sum f_{i}}=\frac{36850}{86}=428.49$

Calculation of weighted standard distance

- What if the forests with bigger area (the area of the smallest forest as unit) should have more influence?

Forests	f_{i} (Area)	X_{i}	$\mathrm{X}_{\mathrm{i}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}{ }^{\text {a }}$	$\mathbf{Y}_{\mathbf{i}}$	$\mathrm{Y}_{\mathrm{i}}{ }^{\text {a }}$	$\mathrm{f}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}{ }^{2}$
\#1	5	580	336400	1682000	700	490000	2450000
\#2	20	380	144400	2888000	650	422500	8450000
\#3	5	480	230400	1152000	620	384400	1922000
\#4	10	400	160000	1600000	500	250000	2500000
\#5	20	500	250000	5000000	350	122500	2450000
\#6	1	300	90000	90000	250	62500	62500
\#7	25	550	302500	7562500	200	40000	1000000
$\sum f_{i}$	86		$\sum f_{i} X^{2}$	19974500		$\sum f_{i} Y_{i}^{2}$	18834500
$S_{W D}=\sqrt{\left(\frac{\sum f_{i} X_{i}{ }^{2}}{\sum f_{i}}-\bar{X}_{w c}^{2}\right)+\left(\frac{\sum f_{i} Y_{i}^{2}}{\sum f_{i}}-\bar{Y}_{w c}^{2}\right)}$							
$=\sqrt{\left(\frac{19974500}{86}-476.16^{2}\right)+\left(\frac{18834500}{86}-428.49^{2}\right)}=202.33$							

Standard distance

Standard distance

Spatial clustered?

Given such a map, is there strong evidence that housing values are clustered in space?

- Lows near lows
- Highs near highs

San Diego Housing Values

More than this one?

San Diego HH Income

- Does household income show more spatial clustering, or less?

Moran's I statistic

Global Moran's I

- Characterize the overall spatial dependence among a set of areal units

$$
I=\left(\frac{n}{\sum_{i=i}^{n} \sum_{j=1}^{n} w_{i j}} \sqrt[\left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(x_{i}-\bar{x}\right)\left(x_{j}-\bar{x}\right)}{n}\right)]{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right) \longrightarrow \text { Covariance }
$$

Summary

- Global Moran's I and local I have different equations, one for the entire region and one for a location. But for both of them (I and I_{i}), or the associated scores (Z and Z_{i})
- Big positive values \rightarrow positive spatial autocorrelation
- Big negative values \rightarrow negative spatial autocorrelation
- Moderate values \rightarrow random pattern

Network Analysis: Shortest routes

Manhattan Distance

- Euclidean median
- Find (X_{e}, Y_{e}) such that

$$
d_{e}=\sum \sqrt{\left(X_{i}-X_{e}\right)^{2}+\left(Y_{i}-Y_{e}\right)^{2}}
$$

is minimized

- Need iterative algorithms
- Location of fire station
- Manhattan median

$$
\begin{align*}
& d_{i j}=\left|X_{i}-X_{j}\right|+\left|Y_{i}-Y_{j}\right| \\
& =|400-300|+|500-250| \\
& =350 \tag{0,0}
\end{align*}
$$

Summary

- What are spatial data?
- Mean center
- Weighted mean center
- Standard distance
- Weighted standard distance
- Euclidean median
- Manhattan median

Calculate in GIS environment

Spatial resolution

- Patterns or relationships are scale dependent
- Hierarchical structures (blocks \rightarrow block groups \rightarrow census tracks...)
- Cell size: \# of cells vary and spatial patterns masked or
 overemphasized
- How to decide
- The goal/context of your study
- Test different sizes (Weeks et al. article: 250, 500, and 1,000 m)

\% of seniors at block groups (left) and census tracts (right)

Administrative units

- Default units of study
- May not be the best
- Many events/phenomena have nothing to do with boundaries drawn by humans
- How to handle
- Include events/phenomena outside your study site boundary
- Use other methods to "reallocate" the events /phenomena (Weeks et al. article; see next page)

A. Locate human settlements using RS data

B. Find their centroids

C. Impose grids.

Edge effects

- What it is
- Features near the boundary (regardless of how it is defined) have fewer neighbors than those inside
- The results about near-edge features are usually less reliable
- How to handle
- Buffer your study area (outward or inward), and include more or fewer features
- Varying weights for features near boundary

a. Median income by census tracts

c. More census tracts within the buffer (between brown and black boxes) included

Applying Spatial Statistics

- Visualizing spatial data
- Closely related to GIS
- Other methods such as Histograms
- Exploring spatial data
- Random spatial pattern or not
- Tests about randomness
- Modeling spatial data
- Correlation and χ^{2}
- Regression analysis

