Spatial Statistics and Analysis Methods

(for GEOG 104 class).

Provided by Dr. An Li, San Diego State University.

Types of spatial data

Points

- <u>Point pattern analysis (PPA; such as nearest neighbor distance, quadrat analysis)</u>
- Moran's I, Getis G*

Areas

- Area pattern analysis (such as join-count statistic)
- Switch to PPA if we use centroid of area as the point data

Lines

Network analysis

 \rightarrow Three ways to represent and thus to analyze spatial data:

Spatial arrangement

- Randomly distributed data
 - The assumption in "classical" statistic analysis
- Uniformly distributed data
 - The most dispersed pattern—the antithesis of being clustered
 - Negative spatial autocorrelation
- Clustered distributed data
 - Tobler's Law all things are related to one another, but near things are more related than distant things
 - Positive spatial autocorrelation

 \rightarrow Three basic ways in which points or areas may be spatially arranged

Spatial Distribution with *p* value

Nearest neighbor distance

Questions:

- What is the pattern of points in terms of their nearest distances from each other?
- □ Is the pattern random, dispersed, or clustered?

Example

 Is there a pattern to the distribution of toxic waste sites near the area in San Diego (see next slide)? [hypothetical data]

Step 1: Calculate the distance from each point to its nearest neighbor, by calculating the hypotenuse of the triangle:

$$NND_{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

Site	X	Y	NN	NND
Α	1.7	8.7	В	2.79
В	4.3	7.7	С	0.98
С	5.2	7.3	В	0.98
D	6.7	9.3	С	2.50
E	5.0	6.0	С	1.32
F	6.5	1.7	E	4.55
	13.12			
NND = -	— = n	= =		

Step 2: Calculate the distances under varying conditions

• The average distance if the pattern were random?

$$\overline{NND_R} = \frac{1}{2\sqrt{Density}} = \frac{1}{2\sqrt{0.068}} = 1.92$$

Where density = n of points / area=6/88=0.068

 If the pattern were completely clustered (all points at same location), then:

$$\overline{NND_C} = 0$$

• Whereas if the pattern were completely dispersed, then:

$$\overline{NND_D} = \frac{1.07453}{\sqrt{Density}} = \frac{1.07453}{0.261} = 4.12$$

(Based on a Poisson distribution)

Step 3: Let's calculate the standardized nearest neighbor index (R) to know what our NND value means:
Perfectly dispersed

$$R = \frac{\overline{NND}}{\overline{NND_R}} = \frac{2.19}{1.92} = 1.14$$

= slightly more <u>dispersed</u> than random

Hospitals & Attractions in San Diego

- The map shows the locations of hospitals (+) and tourist attractions (>) in San Diego
- Questions:
 - Are hospitals randomly distributed
 - Are tourist attractions clustered?

Spatial Data (with X, Y coordinates)

Any set of information (some variable 'z') for which we have locational coordinates (e.g. longitude, latitude; or x, y)
 Y
 Z₁
 Z₂

- Point data are straightforward, unless we aggregate all point data into an areal or other spatial units
- Area data require additional assumptions regarding:
 - Boundary delineation
 - Modifiable areal unit (states, counties, street blocks)
 - □ Level of spatial aggregation = scale

Area Statistics Questions

- 2003 forest fires in San Diego
- Given the map of SD forests
 - What is the average location of these forests?
 - □ How spread are they?
 - Where do you want to place a fire station?

What can we do?

(0<u>,0</u>)

Preparations

- Find or build a coordinate system
- Measure the coordinates of the center of each forest
- Use centroid of area as the point data

Mean center

- The standard distance measures the amount of dispersion
 - Similar to standard deviation
 - Formula

Forests	X	X ²	Y	Y ²
#1	580	336400	700	490000
#2	380	144400 650		422500
#3	480	230400 620		384400
#4	400	160000	500	250000
#5	500	250000	350	122500
#6	300	90000	250	62500
#7	550	302500	200	40000
	Sum of X ²	1513700	Sum of X ²	1771900
	$\overline{X}_{c} = 455.71$		$\overline{Y}_{C} = 467.14$	

$$S_{D} = \sqrt{\left(\frac{\sum X_{i}^{2}}{n} - \overline{X}_{c}^{2}\right) + \left(\frac{\sum Y_{i}^{2}}{n} - \overline{Y}_{c}^{2}\right)}$$
$$= \sqrt{\left(\frac{1513700}{7} - 455.71^{2}\right) + \left(\frac{1771900}{7} - 467.14^{2}\right)} = 208.52$$

Definition of weighted mean center standard distance

What if the forests with bigger area (the area of the smallest forest as unit) should have more influence on the mean center?

Calculation of weighted mean center

■ What if the forests with bigger area (the area of the smallest forest as unit) should have more influence?

Forests	f(Area)	X _i	f _i X _i (Area*X)	Y _i	f _i Y _i (Area*Y)
#1	5	580	2900	700	3500
#2	20	380	7600	650	13000
#3	5	480	2400	620	3100
#4	10	400	4000	500	5000
#5	20	500	10000	350	7000
#6	1	300	300	250	250
#7	25	550	13750	200	5000
$\sum f_i$	86	$\sum f_i X_i$	40950	$\sum f_i Y_i$	36850

 $\overline{X}_{wc} = \frac{\sum f_i X_i}{\sum f_i} = \frac{40950}{86} = 476.16 \quad \overline{Y}_{wc} = \frac{\sum f_i Y_i}{\sum f_i} = \frac{36850}{86} = 428.49$

Calculation of weighted standard distance

■ What if the forests with bigger area (the area of the smallest forest as unit) should have more influence?

Forests	f _i (Area)	X _i	X _i ²	$f_i X_i^2$	Y _i	Y _i ²	$f_i Y_i^2$
#1	5	580	336400	1682000	700	490000	2450000
#2	20	380	144400	2888000	650	422500	8450000
#3	5	480	230400	1152000	620	384400	1922000
#4	10	400	160000	1600000	500	250000	2500000
#5	20	500	250000	5000000	350	122500	2450000
#6	1	300	90000	90000	250	62500	62500
#7	25	550	302500	7562500	200	40000	1000000
$\sum f_i$	86		$\sum f_i X_i^2$	19974500		$\sum f_i Y_i^2$	18834500

$$S_{WD} = \sqrt{\left(\frac{\sum f_i X_i^2}{\sum f_i} - \overline{X}_{wc}^2\right) + \left(\frac{\sum f_i Y_i^2}{\sum f_i} - \overline{Y}_{wc}^2\right)}$$

$$=\sqrt{\left(\frac{19974500}{86} - 476.16^2\right) + \left(\frac{18834500}{86} - 428.49^2\right)} = 202.323$$

Spatial clustered?

- Given such a map, is there strong evidence that housing values are clustered in space?
 - Lows near lows
 - Highs near highs

San Diego Housing Values

More than this one?

Does household
 income show more
 spatial clustering, or
 less?

San Diego HH Income

Moran's I statistic

- Global Moran's I
 - Characterize the overall spatial dependence among a set of areal units

$$I = \left(\frac{n}{\sum_{i=i}^{n} \sum_{j=1}^{n} w_{ij}}\right) \left(\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \overline{x})(x_j - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}\right) \xrightarrow{\text{Covariance}}$$

Summary

 Global Moran's I and local I_i have different equations, one for the entire region and one for a location. But for both of them (I and I_i), or the

associated scores (Z and Z_i)

- Big positive values →positive spatial autocorrelation
- Big negative values → negative spatial autocorrelation
- Moderate values → random pattern

Network Analysis: Shortest routes

Manhattan Distance

Euclidean median
 Find (X_e, Y_e) such that

$$d_{e} = \sum \sqrt{(X_{i} - X_{e})^{2} + (Y_{i} - Y_{e})^{2}}$$

is minimized

- Need iterative algorithms
 Location of fire station
- Manhattan median

$$d_{ij} = |X_i - X_j| + |Y_i - Y_j|$$
$$= |400 - 300| + |500 - 250|$$

= 350

Summary

- What are spatial data?
- Mean center
- Weighted mean center
- Standard distance
- Weighted standard distance
- Euclidean median
- Manhattan median

Calculate in GIS environment

Spatial resolution

- Patterns or relationships are scale dependent
 - □ Hierarchical structures (blocks → block groups → census tracks...)
 - Cell size: # of cells vary and spatial patterns masked or overemphasized
 - How to decide
 - The goal/context of your study
 - Test different sizes (Weeks et al. article: 250, 500, and 1,000 m)

Vegetation types at large (left) and small cells (right)

% of seniors at block groups (left) and census tracts (right)

Administrative units

Default units of study

- May not be the best
- Many events/phenomena have nothing to do with boundaries drawn by humans

How to handle

- Include events/phenomena outside your study site boundary
- Use other methods to "reallocate" the events /phenomena (Weeks et al. article; see next page)

A. Locate human settlements using RS data

B. Find their centroids

C. Impose grids.

Edge effects

What it is

- Features near the boundary (regardless of how it is defined) have fewer neighbors than those inside
- The results about near-edge features are usually less reliable

• How to handle

- Buffer your study area (outward or inward), and include more or fewer features
- Varying weights for features near boundary

a. Median income by census tracts

c. More census tracts within the buffer (between brown and black boxes) included d. More areas are significant

Applying Spatial Statistics

- Visualizing spatial data
 - Closely related to GIS
 - Other methods such as Histograms
- Exploring spatial data
 - Random spatial pattern or not
 - Tests about randomness
- Modeling spatial data
 - Correlation and χ^2
 - Regression analysis