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Abstract.   Traditional GISystems are no longer appropriate for modern distributed, 
heterogeneous network environments due to their closed architecture, and their lack of 
interoperability, reusability, and flexibility.  Distributed GIServices can provide broader 
capabilities and functions for data management, browsing, and exchange.  This paper 
introduces a dynamic architecture for distributing GIServices.  The term dynamic indicates 
that the architecture is constructed temporarily by connecting or migrating geodata objects 
and GIS components across a network.  The intention of the paper is to overview 
components and protocols necessary for a workable implementation of dynamically linked 
GIServices.  The paper introduces a metadata scheme for both geodata objects and 
software components, and proposes an implementation framework based on existing 
languages, computing architectures and web services.   In the framework, GIS nodes form 
the basic processing unit. .  All GIServices can be accomplished through collaboration 
between GIS nodes. The design of the presented framework emphasizes scalability, 
reusability, and dynamic integration.  Current distributed computing environments cannot 
fully support dynamic architectures for technical and other reasons.  Throughout the 
discussion, we distinguish what currently can be implemented from what cannot.  We 
summarize costs and benefits of adopting a dynamic GIServices paradigm in a final 
section. 
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1. Making the Case for Geographic Information Services 
 
The development of Geographic Information Systems (GISystems) is highly influenced by 
the evolution of information technology.  Due to the popular use of the Internet and the 
dramatic progress of telecommunications technology, the paradigm of GIS is shifting.  
Traditional GISystems provide capabilities to handle georeferenced data, including data 
input, storage, retrieval, management, manipulation, analysis, and output (Aronoff 1989).  
However, with closed and centralized legacy architecture, current GISystems cannot fully 
accommodate distributed, heterogeneous network environments due to their lack of 
interoperability, modularity, and flexibility.  With advances in computer networking 
technologies, a distributed geographic information services (GIServices) paradigm   
becomes a reachable goal, albeit one that requires fundamental changes in architectural 
design.   
 
The purpose of an information service is to provide information in an appropriate form for 
a particular task, which requires selection and abstraction (Shuey 1989).   “Information 
services include tools for data management, browsing, access, cleaning, processing, 
interpretation, presentation, and exchange” (Buttenfield 1998, p.161).  Geographic 
Information Services open a wide range of on-line geospatial applications, including for 
example digital libraries (NSF 1994), digital governments (NSF 1998), digital earth 
(Goodchild 2000), on-line mapping (Peterson 1997; Kraak and Brown 2001), data 
clearinghouses (Peng and Nebert 1997), real-time spatial decision support tools (Craig 
1998), and process modeling (Huang and Worboys 2001).   
 
Provision of GIServices can synergize information sharing and may speed the diffusion of 
GIS technologies into communities currently identified as non-adopters.  On-line 
GIServices encourage multidisciplinary cooperation between the GIS community and the 
computer science community, as well as collaborations between industry and science (e.g. 
Li 1996; Zhang and Lin 1996; Plewe 1997; Buttenfield 1997).  For example, GIServices  
provide digital library resources to dispersed populations (Goodchild 1997).  Prototype on-
line GIServices provide a virtual classroom for distance learning (Buttenfield and Tsou 
1999; Petrik 2002).  Early on-line GIService application examples include the Xerox Map 
Viewer (Putz 1994) and GRASSLinks (Huse 1995).  The Alexandria Digital Library 
Project (Buttenfield and Goodchild 1996; Frew et al. 1998) adopted Java to implement 
GIServices such as spatial queries, map browsing, and metadata indexing.   
 
Major impediments to adoption of dynamic GIServices include technical, institutional and 
economic factors.  An example of such factors is the lack of interoperable component 
technologies in current GIS design. Another factor is the hesitance to adopt interoperability 
standards. A third factor relates to desires to protect either individual or commercial 
intellectual property.  It would be an oversimplification to place blame;  these impediments 
are real, and arguments on both sides are in many cases valid and compelling.  It is useful 
and even encouraging however to stand back for a moment from the debates; to 
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acknowledge how close the GIS community actually stands to achieving a fully 
operational dynamic architecture for distributing GIServices across networked 
environments; and to identify what impediments may be resolved immediately given 
current states of knowledge and technology.  
 
Many information services have matured in the computer science community.  Such 
services can be adapted to provide intelligent development environments and to distribute 
GIServices dynamically.   For example, intelligent software agents (Maes, 1994; Bradshaw 
1997) could provide a flexible method for searching heterogeneous GIS data and accessing 
programs across networks.  Deployment of a problem-solving environment, or PSE 
(Walker et al. 2000; Wright et al. 2000) could provide an integrated software environment 
for rapid prototyping  of scientific visualization systems and expert systems.  Many 
essential functions of distributed GIServices will  benefit from PSEs, including knowledge 
repositories, sophisticated execution control systems, and visualization environments.   A 
third very promising area of information services technology is the provision of web 
services.  The goal of web services is to combine multiple programs distributed in different 
network locations and to provide integrated functions and services for their users 
(Caudwell et al. 2001; Newcommer 2002).   
 
The web service concept is similar to the dynamic architecture proposed in this paper 
except in one important respect.   Existing web service solutions focus on technology-
oriented solutions.  This paper argues  for a task-oriented solution, that emphasizes 
operational metadata, dynamic relationships between data objects and software 
components, and  deployment of intelligent software agents.  
 
This paper proposes a dynamic architecture to facilitate delivery of flexible GIServices 
under a distributed network environment.  The new architecture should be technology- and 
application- independent.  It should distribute GIServices without constraining client-side 
hardware or operating systems. It should be easy to modify, and it should retain computing 
resources locally and across networks only for the time needed to complete a requested 
task. Finally, the architecture should be both robust and secure, able to withstand the 
vagaries of network breakdown.  The paper will overview elements of the architecture, 
communication protocols, and information exchange requirements needed to make a 
dynamic architecture work.  As stated above, emerging information services bring us 
closer to achieving this goal.  Technical and institutional barriers must still be overcome.  
The paper will identify these barriers as it overviews one possible solution. 
 
 

2.  Extending Current GIS Architectures, in a Nutshell 
 
The paradigm of dynamic GIServices extends two existing architectures  in several ways 
(Figure 1). 
 

Figure 1 goes about here 
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In the first (Traditional) architecture, computations occur in centralized repositories 
holding interfaces, programs and data.  Each element is embedded and cannot be separated 
from the rest of the architecture.  Modeling remains platform-dependent and application-
dependent.  Migrating a model or application from within a traditional architecture into a 
different operating system or platform is difficult.  The traditional architecture is what 
most GIS users encounter today. 
 
The second (Client/Server) architecture is based on generic network design.  Many current 
implementations of “Internet-based GIS” are built on this type of architecture.  Client-side 
database components and program components are separated from server-side components.  
This architecture allows clients to access a server remotely by Remote Procedure Calls 
(RPC), or by techniques such as Open Database Connectivity (ODBC).  Client-side 
components are usually platform-independent, requiring only an Internet browser to run.  
However, each client component can access only one (pre-) specified server at a time.  
Software components differ on client machines and server machines, and are not 
interchangeable: a client is always a client, and lacks many functions contained in a 
specialized server environment.  Servers come with different connection frameworks that 
cannot be shared.  
 
In the third (Distributed) architecture, GIServices are built upon a more advanced 
networking scheme.  The significant difference is the adoption of distributed component 
technology, which can interact with heterogeneous systems without the constraints of 
traditional client/server relationships (Montgomery 1997).  Under a distributed 
architecture, there is no difference between a client and a server.  Every GIS node can act 
as client or a server based on the task.  A client is simply defined as the requester of a 
service.  A server (likewise) is simply the machine that provides the service.  This 
architecture permits dynamic linkages between data and software.  In fact, the architecture 
is very similar to what is called “peer-to-peer” computing (P2P), that permits personal 
computers or workstations to communicate directly with one another, without a server 
(Roberts-Witt 2001).  The difference between P2P computing and the distributed 
architecture is that P2P can allow only one-to-one or one-to-many communication.  A fully 
distributed GIService architecture has to permit many-to-many communications among 
computers; and here lies a current technical barrier to be overcome.  
 
The driving force behind the extension of GIS architectures is the availability of new 
technology, especially in the context of languages and network technology.  New 
languages such as Java and C# (C-sharp) support platform-independent applications across 
the Internet.  The Java language, developed by Sun Microsystem, Inc., is a pure object-
oriented language, designed to enable the development of secure, high performance, and 
highly robust applications on multiple platforms in heterogeneous, distributed networks 
(Gosling and McGilton, 1996).  One important advantage of Java is the development of 
Java Bean technology, which can be used for creating reusable, embeddable software code.  
The GeoVISTA Studio developed at Penn State University (www.geovistastudio.psu.edu) 
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is one successful example of adopting Java Bean and component-based softwarFe 
engineering techniques to provide a visual programming environment for geoscientific data 
analysis and visualization (Takatsuka and Gahegan, 2002).  C# is another possible 
language for developing distributed  services.  C# provides similar features to Java 
including inheritance, encapsulation, abstraction, and polymorphism.  C# is a generic 
language developed under the .NET framework by Microsoft (Pleas, 2000).  .NET is a 
next-generation-web-service framework which will be described later.   
 
Three advanced network technologies support distributed computing environments (Orfali 
and Harkey 1997) and peer-to-peer computing  (Roberts-Witt 2001).  These technologies 
include the Common Object Request Broker Architecture (CORBA), the Distributed 
Component Object Model (DCOM), and Remote Method Invocation (RMI).     Distributed 
component technology allows clients to access heterogeneous servers dynamically, which 
is an essential feature of distributing GIServices.  They operationalize the maxim that “the 
network is the computer”. 
 
One may question why dynamic GIServices have not been implemented yet given the 
existence of appropriate coding languages and distributed component technology.   
Currently, many on-line GIS projects (correctly) emphasize standardized, interoperable 
data (Bishr-Yaser 1996; Sondheim et al. 1999).  What is not a focus, and should be, is the 
interoperability of GIServices, that is, of the code that processes the standardized, 
interoperable data.  Most current GIServices are technology-specific.  When the 
technology changes, and it always does, existing services are very difficult to migrate into 
the new framework.  Very often,  services have to be abandoned.  Information service 
software is expensive to develop and more expensive to redevelop. This provides one of 
the most compelling arguments to design an architecture that can be upgraded readily.   
 
But herein lies a second barrier to adoption of a dynamic GIS architecture, with technical, 
economic and institutional concerns to resolve. A fully open architecture with completely 
modular code would permit anyone to “plug-and-play”, inserting modifications and 
potentially revising the code completely.  There are issues of software security, of ethics 
and responsible programming, and intellectual property issues related to re-use of code, as 
well as commercial impacts to opening proprietary software designs.   
 
Notwithstanding widespread technical and institutional dilemmas, it is important to stay 
mindful that emerging technologies are coming available to overcome technical 
impediments.  The remainder of this paper introduces a dynamic architecture for 
distributing GIServices from a task-oriented perspective.  The term dynamic indicates that 
the architecture is constructed temporarily by connecting data objects and software 
components across networks.  The GIServices architecture organizes on the fly, according 
to the specific task.  Dynamic construction is achieved in three phases, by  modularizing 
specific services as LEGO-like components, by embedding an object-oriented metadata 
scheme, and by implementing agent-based communications.    Each will be described in 
turn.  The dynamic architecture will be demonstrated in a GIS scenario.  Before describing 
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the architecture, a brief history of distributed components research will help to put the 
proposed paradigm and architecture in context. 
 
 
3. A Brief Chronology of Distributed Computing and GIS 
 
Developments in two separate areas support the technology underlying dynamic 
architectures for GIServices.  The first is the emergence of distributed components, which 
underlies software coding.  The second is the demonstration that GIServices can be 
distributed via the Internet, through numerous on-line GIS applications.    
 
 
3.1 The Development of Distributed Components 
 
The original idea of distributed components came from Computer Science.  Generic 
distributed components adopt features of object-oriented modeling, including 
encapsulation, polymorphism, inheritance, object-binding, and object relationships such as 
specialization, collaboration, and composition (Rumbaugh et al. 1991; Taylor 1992).  
Distributed components are constructed by  partitioning the client and server sides of an 
application into self-contained units that can interoperate across networks, integrating 
languages, applications, tools, and operating systems.  The capabilities of distributed 
components include roaming agents, rich data management, abstract and generalized 
interfaces, intelligent self-managing entities, and intelligent middleware (Orfali et al. 
1996).  
 
The current commercial market provides three major infrastructures supporting distributed 
component technology.  The Common Object Request Broker Architecture (CORBA) was 
developed by the Object Management Group. The Distributed Component Object Model 
(DCOM) both developed by Microsoft Corporation.   The Java Platform technology was 
developed by Sun Microsystems Inc, and its subsidiaries, Sunsoft and Javasoft.  CORBA, 
DCOM and Java can distribute low-level services, for example migrating data objects 
between machines, or global object naming.  Higher level services are also needed 
however, as for example the ability for an object to self-describe in standard format, the 
ability for a machine to broadcast (or respond to) a request for a specific service.  These 
high level services are not yet available or at least not fully robust, and this presents 
another technical impediment to dynamic architectures. 
 
Currently, web services comprise the most exciting developments in distributed component 
technologies.  Web services technology is derived from  CORBA and DCOM technology  
(Caudwell et al. 2001).  Web services are formed by the integration of several key 
protocols and standards: XML (Extensible Markup Language), WSDL (Web Services 
Definition Language), SOAP (Simple Object Access Protocol), and UDDI (Universal 
Description, Discovery, and Integration).  Web services are modularized applications that 
are self-describing and contain loosely bound functions and programs (Caudwell et al. 
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2001).  The power of web services is to combine these elements under a single user-
friendly running environment using a web-based user interface.  For example, a user can 
combine an on-line mapping function, a point-of-interest database, and a hotel reservation 
system to design a three-day vacation itinerary from his/her web browser.   An example of 
such a web service currently  under development by Microsoft is called MapPoint.Net.   
MapPoint.Net provides mapping modules and real-time geospatial information (such as 
road construction, weather reports, etc.) in a form to integrate with other applications, such 
as car navigation, decision support systems, location-based services, etc. (Brûlé, 2002).   
 
One can readily see the great potential for the integration of web services into GIS 
applications, for example emergency management and hazards mitigation.  
The .NET acronym refers to a newer (a “next generation”) distributed component 
technology developed by Microsoft, that enables software  “building blocks”  that 
exchange data and services between heterogeneous computing environments (Brûlé, 2002).  
The C# language was developed as part of the .NET toolkit.   Using  .NET web services, 
programmers can combine multiple languages in a single service.  For example, a.NET 
application might utilize Java Swing API for the design of its graphic interface, C# for its 
buffering function, and Perl scripts for text-based attribute queries.  With multiple 
language capabilities, existing high-level services can be integrated, avoiding the necessity 
either to recode or to force the entire community to adopt a single coding language.  In this 
regard, .NET technology provides tools to overcome both a technological as well as an 
institutional barrier.    
 
One important feature of web services is improved access to distributed components on 
both the client side and the server side.  A single machine can play a server’s role or a 
client’s role.  For example, a GIS site in Colorado can access multiple federal database 
servers as a client.  When other GIS projects request data about Colorado, the same GIS 
site that was a client to federal servers can serve data to other users.  In general, distributed 
component technologies eliminate the constraint that a machine must be a client or a 
server, to permit novel approaches to designing software solutions.  “These shifts are not 
simply due to operating in a distributed or networked environment.  Rather, great diversity 
and innovation of information technology accompanies distributed computing which, in 
turn, brings new models of the world and new ways of solving problems.” (Ganti and 
Brayman 1995, p. 33) 
 
   
 3.2 On-line GIS Applications 
 
Three milestones so far have characterized the history of on-line GIS projects.  The Xerox 
PARC Map Viewer developed in 1994 was the first mapping service prototype on the 
Internet (Putz 1994). The Xerox Map Viewer provided a preliminary technical solution for 
distributed GIServices by using a HTTP server and CGI programs.  The technical 
framework underlying Map Viewer  was adopted by many early on-line GIS applications. 
The second milestone, GRASSLinks was the first fully functional on-line GIService (Huse 
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1995). GRASSLinks illustrated a comprehensive prototype of traditional GIS functions, 
such as map browsing, buffering, overlay, etc.  Both the Xerox Map Viewer and 
GRASSLinks were designed to mimic traditional GISystem functions.  The third milestone 
was the initial version of the Alexandria Digital Library, that introduced new content for 
on-line GIServices, first implemented a “digital library” metaphor for georeferenced data, 
and provided sophisticated library functions for geospatial information, including 
collections holding, catalog searching, and metadata indexing (Buttenfield and Goodchild 
1996).  Although these three examples are widely recognized in the GIS community, each 
was developed  using different database frameworks, and different information 
technologies.  Incompatible architectures and programming methods have prevented 
integration or sharing with other on-line prototypes.  This technical limitation has 
institutional consequences, since every new online GIS application requires programmers 
to essentially start from scratch. 
 
The development chronology of on-line GIS indicates that a technology-oriented design is 
problematic and hinders subsequent development and  knowledge sharing.  Realizing the 
lack of a standardized framework, the Open GIS Consortium (OGC) and the ISO/TC 211 
Technical Committee were independently formed in 1994 (Buehler and McKee 1998; 
Rowley 1998).  OGC’s mandate included two components: full integration of geospatial 
data and geoprocessing resources into mainstream computing; and the widespread 
adoption of interoperable software and geodata products throughout the information 
infrastructure (OGC 1998). The ISO/TC211 Working Group was formed by the 
International Standards Organization, to emphasize a service-oriented view of 
geoprocessing that balanced  data, task and systems (Kuhn 1997).  The establishment of 
OGC and ISO/TC 211 illustrates GIS community determination to solve the problems 
associated with integrating on-line GIS applications.  Based on publications from both 
organizations, the OGC’s and ISO/TC 211’s specifications to date focus on interoperable 
data, but do not as yet address interoperability of processing mechanisms.  Without 
consideration of both, many implementation problems can be expected, for reasons given 
inthe first section of the paper.    
 
 
 4. Designing a Dynamic Distributed GIService Architecture  
 
Let us reiterate that the presentation of a dynamic architecture is intended as much as a 
proof-of-concept that existing technologies are available that could achieve a dynamic 
architecture, as it is a platform for discussion of what technical and institutional 
impediments remain.  The concept of a dynamic GIService architecture is derived from 
LEGO-like distributed software components.  The LEGO metaphor refers to the well-
known children’s toy blocks that can be interlocked and stacked.  Similar to LEGO blocks, 
the intention is to stack and interlock GIServices modules to form a dynamic GIS package 
shaped specifically for a given task.  The LEGO architecture may persist only briefly, for 
completion of a single GIS task.  Then the LEGO modules disperse, to be rearranged and 
restacked in a different configuration for a different GIS task. The discussion that follows 
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presents object frameworks supporting data and services, communication strategies by 
which service requests are broadcast and responded to, and a metadata scheme enabling 
data and software components to initiate activity.   In a fully dynamic architecture, GIS 
data and software components can be moved, combined and shared across distributed 
networks.  The overall objective is to shift the GIS paradigm from a monolithic, inflexible 
approach to a modularized, plug-and-play approach. 
 
 
4.1 Object Frameworks Supporting Distributed Data and Services 
 

Figure 2 goes about here 
 
The establishment of GIServices is collaborated among several “GIS nodes”, that is, a 
group of network-based GIS workstations (Figure 2).  GIS nodes incorporate two types of  
information.  The first type, geodata objects are information entities that identify the 
geographical location and characteristics of natural or cultural features and boundaries of 
the Earth (Buehler and McKee 1996).  Geodata objects are encapsulated in object-oriented 
structures, which may be vector-based or raster-based. 
 
The second type of GIS node, GIS software components are “ready-to-run”, modularized 
programs that are dynamically loaded into a network-based system to enable GIS 
functionality.  For example, a “GIS buffering component” will  generate a buffer around a 
selected data object for the targeted GIS application.  The term “GIS components” often 
refers to data objects (Orfali et al. 1996).  However, this paper uses the term to refer to 
software in order to distinguish these elements from “geodata objects”.   
 
In an ideal computing environment, GIS data objects and software components would 
interact dynamically to generate GIServices and accomplish different GIS tasks, using 
protocols discussed below.  The coordination of distributed components commonly 
requires a shared data and action schema, that is, detailed apriori ontological commitments 
on behalf of service developers and users.  At present consensus does not exist., in spite of 
continuing efforts on the part of OGC, ISO and other standards organizations.   
 
These two types of nodes form the LEGO building blocks. Their configuration, that is, the 
architecture, is dynamically constructed based on three factors. The first is the task is to be 
performed.  Different GIS tasks require different types and arrangement of GIServices.  
For example, the architecture responding to a task to update urban census geography will 
focus on GIS database functions.  An architecture for hydrologic modeling will require 
access to GIS analysis procedures.  
 
GIS-node hardware profiles are the second factor.  Hardware specifications including CPU 
speed, RAM, available hard disk space will dictate what GIServices can be delivered 
locally, and what services may be optimally run on a thick or thin client.  GIS node 
availability will also be important.  Different strategies for distributed GIService 
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architecture must depend on the available profiles.  The way in which a particular strategy 
is selected is discussed below in the section describing intelligent agents.   
Networking performance is the third essential factor in configuring a dynamic architecture.  
Different bandwidth and connection types such as Ethernet, ATM, DSL, or Cable modem 
services require different configuration and deployment strategies.  For example, a 
distributed GIService running on a 56K bandwidth connection may have difficulty in 
uploading huge data sets to another node.  A GIService networked through a 100 MB 
Ethernet connection would not have this problem. 
 
Figure 3 illustrates a hypothetical scenario where a GIService architecture is constructed 
dynamically by configuring GIS components and geodata objects among several GIS 
nodes.  In the scenario, a GIS user (Mike) needs to display a Colorado Road map on his 
GIS node.  He submits a task request and the local node (A) connects to other GIS nodes 
(B and C) that hold GIS software components (black circles) and geodata objects (white 
circles).  The data and software objects on node B are copied over to node A.  The GIS 
module on C is not copied, but run across the network in distributed fashion.  This could be 
due to hardware or to networking factors, as described above.  On completion of Mike’s 
GIS task, the data objects and components are restored to their original status.  Copies of 
data and software migrated from node B are deleted, and the connection to node C is 
terminated.  The architecture exists only long enough to support the requested task, 
following which the nodes are de-coupled to wait for the next request. 
 

Figure 3 goes about here 
 
There is much in this hypothetical scenario to account for.  Nodes must either have 
knowledge about each other, or be able to broadcast information on hardware profiles, 
networking, and available resources. GIS tasks must be clearly defined and modularized to 
the point where a node can be dynamically defined as a thick or thin client.  In general, 
network routing or location modeling will run more effectively on a thick node, as 
complicated calculations and algorithms may be more efficiently handled without an 
intervening network.  For some tasks the choice of thick or thin node may be over-ridden.  
For example, a local thin node may be appropriate to handle map display services, 
permitting the GIS user to take over intuitive decisions on graphic design and layout.   
 
Another consideration for this scenario is the establishment of apriori semantic 
consistency.  To re-locate or share distributed geodata objects and GIS components, every 
GIS node should agree upon several pre-defined rules.  For example, if two data objects 
reside on two GIS nodes, which one should a task use? From an ontological standpoint, the 
question becomes how to determine whether two data objects are the same, or different.   
These ontological rules are nontrivial to define and may be a barrier far more challenging 
than technical issues of software engineering.   
 
The balance of functionality between nodes is another critical issue in configuring dynamic 
architectures.  Currently, many research papers argue about which client model is 
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appropriate for specific GIServices (e.g. Vckovski 1998; Tsou and Buttenfield 1998a; 
Huang and Worboys 2001).  The section below proposes a task-based approach to solve 
the dilemma. 
 
 
4.2 Network Communication Strategies for Constructing Dynamic GIServices 
 
Two network strategies can support dynamic configuration of distributed GIServices.  The 
first strategy is object migration, where data or programs move from one node to another.  
The transferred data may or may not be deleted on task completion.  In the second strategy, 
remote connection establishes a communication channel between two nodes, allowing data 
and services to be shared across the channel.  Either can be applied to distribute geodata 
objects or GIS software components.  Although the network technologies used in object 
migration and remote connection are quite different, the goal is the same, that is, utilizing 
available computing resources across networks.   
 
To distribute geodata objects dynamically (Figure 4), the objects can be shared or copied to 
a requesting node.  To share objects, the network strategy used is remote connection to 
establish a link between distributed databases.  The connection is established using SQL 
through Application Programming Interfaces (APIs), such as JDBC, ODBC or OLE DB.  
The second approach (object migration) utilizes an FTP protocol to actually move the data 
object and save it on the requesting node’s local disk.  Data migration may require both 
automated and manual procedures for download and format conversion.   

 
Figure 4 goes about here 

 
Similarly, either network strategy can distribute GIS software components dynamically 
(Figure 5).  GIS operators may be invoked remotely, using Remote Procedure Calls. Other 
protocols are also possible, such as Internet Inter-ORB Protocol (IIOP) or Simple Object 
Access Protocol (SOAP).  Technology frameworks that currently support this approach 
include DCOM, CORBA and Java RMI.  It works as follows.  A GIS application sends a 
request to local component services (that is, a service directory local to the node).  The 
local service will use its client stub to build a connection with another node’s (server) 
skeleton.  The nodes temporarily adopt client and server roles to accomplish the 
connection.  The server-side component services then launch the required GIS component.  
This scenario assumes that the service is not locally available, and that the service 
directory can point to another node where the service actually resides.  More on these 
issues in a moment. 
 

Figure 5 goes about here 
 
The second network strategy actually moves the software modules (the services) from one 
node to another.  The migration process uses an HTTP protocol to transfer the required 
GIS procedure dynamically into the targeted GIS application.  The downloaded GIS 
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component is stored inside a container, which binds with the local GIS application.  This 
approach is currently supported by several technology frameworks, such as Java applets in 
a Virtual Machine, or Active X containers.  It has not been widely integrated into GIS 
environments as yet.  
 
In general, the requirements for dynamically migrating or connecting GIS components and 
geodata objects require several things. A decision making process must be in place for 
identifying nodes with appropriate data and software.  A self-describing node framework 
must be in place for a node to broadcast its directory of services.  Each node requires one 
or more local data containers, and component services that can be distributed.  Current 
technologies such as DCOM, CORBA, and Java can distribute low-level services, for 
example object migration, global naming, life-cycle management, and object 
implementation.  However, a dynamic GIService architecture will also need high-level 
services for example a self-describing node infrastructure and an agent-based mechanism 
to support node broadcasts and other decision processes.  
  
To summarize, network strategies are already in place that can support distribution of data 
and software by sharing or migrating information, but GIS software designs have not 
embraced them.  Flexible distribution of GIS components can provide customizable 
services for different users and the architecture can be modified or updated according to 
specific tasks.  For example, users may add a new category of services, such as 3D 
presentation.    The customization cannot occur, however, without the ability of data 
objects, component services and nodes to self-describe and to broadcast on the network 
what services are available.  The self-description problem can be solved using metadata, as 
described below. 
 
 
 4.3  A Metadata Scheme for Distributing GIServices 
 
In general terms, metadata describes the content, quality, condition, and other 
characteristics of data.   Many recent GIS projects are conducting metadata research (e.g. 
FGDC 1995; Smith 1996; ISO/TC 211/WG 3 1998).  Existing metadata schemes 
standardize format and adopt traditional relational database concepts, where each metadata 
item is represented as an individual record.  However, these approaches do not scale, and 
may interfere with interoperability (Baldonado et al. 1997).  Ironically, standardization of 
metadata formats may undermine the distribution of GIServices.  For example, a single 
metadata profile has proven inadequate to simultaneously describe both a TIN data model 
and a raster data model, as evidenced by the numerous profiles and extensions published 
by ISO/TC 211 (Kuhn 1997; OGC 1998).  Likewise, a single metadata profile will likely 
be inadequate to describe both interpolation and buffering services.  A single standard for 
metadata likely will be both cumbersome and inefficient.  
 
An additional problem is that traditional GIS relational database design detaches metadata 
from associated data, and jeopardizes metadata availability when geodata objects are 
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moved or modified (Tsou and Buttenfield 1998b).  Geodata objects with encapsulated 
metadata permit flexibility, where metadata are tailored to the type of object they describe.  
Figure 6 compares a traditional detached scheme and an encapsulated metadata scheme. 
 

Figure 6 goes about here 
 
When a user moves or copies geodata or services, embedded metadata are automatically 
exchanged.  Additionally, encapsulation protects metadata from external environments.  
Only authorized programs can access the metadata information (as for example with 
electronic access keycodes).  When a new object is generated, it can inherit parent 
metadata information, and add new metadata information for itself.  For example, if a sub-
region is clipped from a satellite image, the new image could inherit the information about 
image resources, sensor types, and resolution from the original image, adding its newly-
clipped spatial boundary coordinates.  The object-oriented scheme described below meets 
these requirements, and demonstrates how metadata can be implemented for both geodata 
objects and software components. 
 
 
 4.3.1  Metadata for Geodata Objects 
 
Figure 7 illustrates two encapsulated metadata elements for geodata objects.  Metadata 
elements are wrapped inside data objects.  These elements are essential for object self-
description, remote database connectivity, and object migration.  Encapsulation protects 
the critical contents of metadata from outside intervention. 
 

Figure 7 goes about here 
 
The first type operation metadata permits GIS software components to operate on geodata 
objects. Operation metadata bridges the connection between geodata objects and software 
components.  For example, to interact with a specific software component such as data 
display, a geodata object’s operation metadata should include information on appropriate 
display scales, coordinate projection, map units, spatial footprint, and data type (discrete, 
categorical or continuous).  From a technical standpoint, it is currently possible to build an 
object wrapping these types of metadata.  The more difficult technical challenge is to 
create  software modules for displaying data that will request this information prior to 
display. Other examples of operation metadata include information on topologic thresholds 
for buffering services, or information on positional accuracy for overlay services.   
 
The second type of metadata supports data connectivity, permits access to geodata by 
remote systems, and facilitates object migration.  Data connectivity metadata identifies 
acceptable connection protocols (e.g. JDBC, ODBC, etc.) and preferred database engines 
(e.g. ORACLE, Informix, Access).  Data connectivity metadata must include rules for data 
migration.   For example, a ‘copy’ rule would duplicate the data object on the target node.  
A ‘move’ rule would duplicate the data object on the target node and delete the original 
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object on the local node. A ‘lifecycle’ rule would dictate how long a migrated geodata 
object can reside at a target node.  
 
The combination of XML and object-oriented databases can provide a possible 
implementation framework for metadata as described above.   For example, a [San Diego 
Roads] data object might use XML elements to specify its metadata elements as follows: 
 
Operation metadata: 

• Coordinate system: State Plane Coordinate California Zone VI 
• Map Units: feet 
• Data type: categorical attributes, line features 
• Topology: Built and Cleaned 
• Scale threshold for display: 1/1,000,000 – 1/300,000 
• Positional Accuracy:  0.534 RMS 

 
Data Connectivity metadata: 

• API-type: OLEDB 
• Protocol: Socket based TCP/IP 
• Default database:  ORACLE 8i 
• Data Migration rule: copy 
• Lifecycle on Target Node: 1 week 

 
With support of operation and connectivity metadata, distributed geodata objects will 
become more accessible, self-describing and self-managing.  Distributed GIS nodes would 
be able to handle geodata objects more automatically and more efficiently.  To reiterate, 
this type of metadata scheme is dependent upon creation of software components that 
request information from data objects prior to processing.  At present, GIS software 
components request this information from the user, or based upon existing system defaults. 
 
 
 4.3.2 Metadata for GIS Software Components  
 
GIS software components must self-describe to interact dynamically with geodata objects, 
and with other software components.  Component interfaces must be described to manage 
software connectivity with remote nodes.  Figure 8 shows three metadata elements that are 
encapsulated to accomplish these dynamic exchanges.   

 
Figure 8 goes about here 

 
Operation requirements metadata specifies input, output and data model(s) that a software 
object can interact with.  For example, a buffer service will operate on a line with topology 
by generating a single envelope.  Without topology, the buffer will generate a circle around 
each individual coordinate pair.  A vector buffer service cannot operate on a raster data 
object.  The buffer service must check for compatibility, by accessing the geodata object’s 
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operation metadata, and by publishing its own requirements metadata.  If metadata are not 
available, the buffer service will fail. 
 
A second metadata element is system integration metadata, which describes available 
functions, methods, and behaviors for collaborating with other GIS software components.  
Taking the hydrological modeling example once again, flow accumulation is often 
computed.  The task cannot be accomplished without first computing flow direction.  
Hypothetically speaking, a dynamic architecture for distributed hydrologic modeling 
would require that the flow accumulation service collaborate with the flow direction 
service.  Again, exchange of metadata will determine compatibility of data model (TIN or 
raster).  Metadata must be exchanged to query the data volume (number of TIN nodes, or 
raster size), and so forth.  System integration metadata must also include component 
migration methods.  Currently, distributed component frameworks such as CORBA and 
DCOM already include system integration metadata in their design.  As yet, GIS software 
suites do not incorporate system integration checks, likely because the code relies on 
consistency at creation time, not at run time.  Changing to the latter form of coding 
requires much more attention by software engineers, thus this presents not only a technical 
but a cultural challenge. 
 
Just as software must interact dynamically with data objects and with other software 
components, dynamic exchange of metadata is required for a software object to operate on 
other GIS nodes. The third metadata element interface API metadata describes the 
Application Programming Interfaces (APIs).  As described above, APIs support remote 
connectivity in distributed environments.  Here, metadata on APIs is exchanged to check 
that the code encapsulated in a distributed software component will run on a remote node, 
whether a component can be migrated, or launched remotely. 
 
One possible implementation framework for GIS component metadata is to adopt the Web 
Service Definition Language (WSDL) as mentioned before.  WSDL can be used to define 
all three types of software metadata.  For example, a [Map display] service’s component 
metadata might be described as follows: 
 
Operation requirements metadata: 

• Topology: optional  
• Map Units: required  
• Coordinate system: required  
• Positional Accuracy: optional  

 
System Integration metadata: 

• Available functions: Zoom-in, Zoom-out, Pan, Redraw 
• Disk requirement: 5MB  
• Display requirement: Color  
• Component migration method: Java RMI 
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Interface API metadata: 
• API type:  Java 2D API 
• API Protocol:  SOAP 
• API Runtime environment: Java Virtual Machine. 

 
With specification of GIS operations, system requirements, interface connection and 
database connectivity, distributed GIS components can become reusable, modularized, 
self-describing, and self-managing.  In spite of the existing technical impediments, we 
view the use of embedded metadata as key to interoperability and modularity for a 
distributed and dynamic GIServices architecture..  
 
 
 4.4  An Agent-based Communication Mechanism 
 
Within a traditional GISystems environment, a centralized system relies on previously 
established data models and command syntax.  A distributed environment, on the other 
hand, is heterogeneous.  Objects may be based on various data models, varied program 
syntax, and a range of component frameworks.  Heterogeneity is bound to intensify with 
the increasingly complicated nature of GIS tasks.  An agent-based communication 
mechanism will help to automate searching, locating, and binding data objects and 
software components across networks.  An agent is an autonomous computer program with 
specific functions that respond to specific events.  Agent communication tends to reduce 
user work and information overload (Maes 1994).  Essentially, agents form the mechanism 
by which GIS nodes interact. Agent activities essential to distributing GIServices 
dynamically include filtering information, interpreting information, and making decisions 
(Knapik and Johnson 1998; Tsou and Buttenfield 1998a).    
 
A filter agent helps at a minimum to locate requested information and to filter out elements 
according unnecessary to complete a specified task.  A filter agent can play a more active 
role.  If a specific task cannot be fully accomplished, the agent may suggest modifications 
or provide an alternate task completion strategy.  
 
An interpreter agent conveys information from one node to another. In distributed network 
environments, heterogeneous data models and systems cannot communicate directly.  An 
agent can bridge heterogeneous information “islands”, translating different data types and 
models.  To translate these correctly, the agent has to acquire knowledge and methods 
about translation procedures.  The methods are encapsulated in the metadata.   
 
A decision agent is more complicated than the other two types, and makes choices 
autonomously based on encapsulated knowledge and rules.  The agent collects information 
about specific events in a network environment, such as migration and connectivity, and 
then decides which of several actions to invoke.  In the case of migration versus 
connectivity, the decision would be based upon factors such as the network throughput, 
GIS node processing speed, data volume, and nature of the GIS service being requested.   
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A decision agent may analyze information  about a specific event (such as a user request or 
a disk-full situation), and make  a decision  in collaboration with a user  or with other 
agents.  For example, a decision agent might detect whether a specific server is shutdown 
and  connect a GIS node to another available server.  In some cases, the agent decision is 
based on rules defined by users or other agents.  Decision rules therefore require 
appropriate interfaces between users and agents.  Collaborations among agents require 
formalized agent interaction mechanisms, and a well-defined hierarchy to resolve 
communication conflicts.  
 
Two implementation approaches can be adopted to implement agent-based 
communication.  The first approach defines three different agent types (filter, interpreter, 
and decision maker) that play a permanent role in the network environment.  The 
alternative approach is more difficult to implement, and grants each agent multiple roles in 
their runtime cycle.  For example, a single agent can act as a filter in one situation and an 
interpreter in another.  Dynamic agent roles improve flexibility but are more difficult to 
code and manage.  Dynamic agents are implemented as objects with polymorphism that 
allows an object to display multiple behaviors.  With polymorphism, a single agent can 
interact differently with other agents, and produce different but appropriate outcomes.    
 
How to design an appropriate communication protocol presents another challenge for the 
design of software agents.  Agent communication protocol differs from traditional network 
communication protocol, such as Transport Control Protocol (TCP) and Internet Protocol 
(HTTP) (Peterson and Davie, 1996).   Agent communication protocol supports high-level, 
application-oriented communications that include the exchange of knowledge bases, user-
defined rules, control of agent behaviors, and interactions between agents and systems 
(FIPA, 1998).  One agent communication protocol is developed by adopting Knowledge 
Query and Manipulation Language (KQML).  KQML is a language and protocol 
developed by ARPA Knowledge Sharing Effort, developing techniques and methodology 
for building large-scale knowledge bases that are sharable and reusable (Bradshaw, 1997; 
Weiss, 1999).  
 
Currently, several agent systems have been proposed or are under development in the 
computer industry and academic departments, such as Telescript by General Magic, 
Tacoma at Cornell University, Agent Tcl at  Dartmouth College, Aglets by IBM, Voyager 
by ObjectSpace, Concordia by Mitsubishi Electric, Ajanta at University of Minnesota 
(Weiss, 1999).  In the cartography community, the AGENT (Automated Generalization 
New Technology) project developed by Lamy and Weibel (Lamy et al. 1999) demonstrates 
the great potentials of agent based methodologies in providing solutions in autonomous 
map generalization.   
 
With the help of a encapsulated metadata scheme, network communication strategies, and 
LEGO-like data and software components, a dynamic architecture for GIServices can be 
built on-the-fly when users request GIS tasks.  Software agents collaborate as follows 
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among several GIS nodes, which form the basic processing units in a distributed and 
dynamic GIService environment.   
 
 
 5. Implementing Distributed GIServices 
 
To provide truly dynamic GIServices, the implementation has to abandon traditional 
concepts associated with a clients/server architecture, and adopt a GIS node architecture, as 
described at the beginning of this paper. To collaborate, GIS nodes require network access 
capability, and four containers (Figure 9).  All GIServices and tasks can be accomplished 
through collaboration between GIS nodes using these elements.   
 

Figure 9 goes about here 
 
The hardware profiles container stores all hardware and operating system information 
about the GIS node.  This information is automatically retrieved from the operating system 
and updated whenever the hardware and peripherals are modified.  The hardware profile 
container also includes metadata about network performance and node-to-node network 
connectivity (in real time).  Machine agents (described below) use hardware profiles as one 
criterion for deploying services.  
 
GIS component containers store software modules.  Several commercial products such as 
ActiveX and the Java Virtual Machine currently implement software containers.  In 
general, GIS component containers integrate software modules either locally (using “plug-
and-play mechanisms) or remotely (using remote invocation).  Agents use these containers 
to download or distribute software modules.  GIS component containers provide universal, 
virtual environments for GIS components to launch on different types of GIS platforms.  
 
Geodata object containers store geodata and associate them with different database 
engines.  Geodata are stored in and retrieved from containers based on their encapsulated 
metadata.  Geodata object containers also serve as packaging (“wrappers”) to migrate 
geodata from one node to another. 
 
Agent containers hold different types of agents including mobile agents transferred from 
another GIS node.  Agent containers facilitate communication between agents and between 
other containers in a GIS node.  As shown in Figure 9, machine agents, component agents 
and geodata agents are stored in the container and communicate with each other.   
 
With these four containers, each GIS node becomes an independent GIS-processing unit, 
able to perform a complete GIS task, to respond to requests from other nodes, and to 
initiate GIService requests.  GIS nodes broaden the capability of an isolated system into a 
group-based, collaborative network.  Figure 10 illustrates a conceptual design of three 
possible collaborations among GIS nodes, across a local area network, across an Intranet, 
and Internet-wide.  
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Figure 10 goes about here 

 
Interaction with GIS nodes in the local area network brings benefit from proprietary data 
sharing and integration inside a secure local environment, such as an office building or a 
department.  Collaboration can extend to the Intranet to share data and software modules 
within a company or a university.  Internet-wide collaboration can distribute GIServices 
nationally and globally.  For example, a GIS modeling task can be distributed from a GIS 
node in the Geography Department at the University of Colorado to request data and 
software from other universities, federal agencies and commercial organizations.  At 
present, users must initiate collaborations one at a time, in preparation for initiating a GIS 
task.  In a dynamic architecture, the act of requesting a GIService will initiate 
collaboration.  With distributed collaboration, the learning curve for novice users may be 
damped down; advanced GIS users can tackle more complicated research and analysis.  
With a scalable dynamic architecture and independent processing units, all GIS users can 
accomplish tasks more efficiently and effectively.  
 
To illustrate the potential of GIS nodes and software agents, the following user scenario 
illustrates how collaborations between GIS nodes and software agents could benefit GIS 
applications.  This scenario emphasizes distributed GIS procedures, automatic data 
conversion, and the efficient use of computing resources.  
 
Scenario Description: 
 
A GIS spatial analyst, Dick, wants to locate a new Wal-Mart store in Boulder.  He needs to 
obtain related map information and perform a GIS overlay analysis for this task.  The 
following criteria must guide the Wal-Mart site selection: 

1. The land use must be commercial urban.  
2. The site must lie above the 500 year flood plain. 
3. The site must be located within 200 meters of a major road. 
4. The neighborhood within 1 mile of candidate sites should have appropriate 

demographic characteristics: annual salary > $50,000, median age < 40 and 
population density > 1,000 people per square mile. 

5. The optimal site fulfills criteria 1-4 and has the lowest land value.  
 
Based on this scenario, Dick will need the following data for his GIS analysis: Land use, 
Flood zones, Roads, block level Census data, and Land values and parcel records.   
 

Figure 11 goes about here 
The site selection criteria must be converted into specific tasks in order to direct the 
behaviors of software agents and the collection of geodata.  The following list is the task 
request submitted by Dick based on this GIS scenario.  
 
Task Request (submitted by Dick): 
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1. Create geodata land-use-select: Select all land use = “commercial urban”. 

2. Create geodata flood-polys500: Select flood plain polygons = “500 year flood plain”.  
(A raster alternative is possible). 

3. Create geodata road-buffer200: Buffer Roads to 200 meters. 

4. Create geodata Landscape: Overlay land-use-select, flood-polys, and road-buffer200. 

5. Create geodata Candidate-sites: Clip Census block polygons by Landscape (retain 
whole blocks). 

6. Create geodata Refine Sites: Query Candidate-Sites = 

annual salary > $50,000 AND median age < 40 AND  

population density > 1,000 people per square mile  

7. Create geodata Final-sites: Spatial Query Refine Sites by Land Parcel Value. 

8. Query Final Sites = Parcel Value [MINIMIZE]. 

 
 
Software agents will help Dick to collect geodata.  Dick sends his Task Request (Figure 
11) to the software agent container residing on his GIS node (his workstation).   A software 
agent encapsulates sub-requests to data servers specified in the GIS node service 
directory.  Some sub-requests will involve additional agents, but for simplicity we will deal 
with only a single agent for this scenario.  One sub-request (to query census demography 
within a 1-mile buffer of each proposed site) requires Census data that is resident on 
Dick’s node.  It is logical that an agent will check the local node prior to broadcasting a 
request; thus criteria (or sub-requests) may achieve responses in a different order than Dick 
specifies.  Other sub-requests require the agent to request geodata across the network, for 
example to migrate Road geodata from the Colorado Department of Transportation’s data 
clearinghouse.  The agent monitors an event loop and updates status as geodata for each 
sub-request achieves a response. 
 
The Task Request involves a series of GIS operations, including overlay and buffering.  
The procedure is the same as for geodata collection: the agent encapsulates sub-requests to 
do the processing for each criterion, checking the local node before broadcasting network 
requests to migrate or copy software components.  In this scenario, both procedures are 
available on Dick’s node.  As for the geodata sub-requests, the agent monitors an event 
loop and updates status as each sub-request achieves a response.  As each geodata set 
becomes available, the buffering component (or overlay component) and geodata will 
negotiate by exchanging encapsulated metadata to determine compatibility with the 
dataset, hardware requirements.  It is possible that the agent encapsulate the compatibility 
negotiations when broadcasting sub-requests, to avoid downloading inappropriate data.  
Pre-processing analysis forms another type of negotiation. For example, each geodata set 
will need to be clipped; and this forms one type of overlay analysis.   
 
By applying the software agents, Dick will not need to worry about the local system 
resources, actual data implementation or other mechanics underlying the task.  He will 
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focus on translating the model into a workable Task Request, and on establishing 
suitability thresholds (as for example median age).  This is of course a very simple 
scenario, and much is left unaccounted for, as for example availability of appropriate data, 
a local GIS node with full processing resources, a stable network, the sequencing of GIS 
buffers and overlays to generate the final suitability model, the syntax of the task request, 
etc.  Many of these relate to barriers and impediments discussed throughout this paper.  
But the scenario demonstrates how the three pieces of a dynamic architecture could 
interlock to provide LEGO-style GIS processing in a dynamic and distributed 
environment. 
 
 
6.  Discussion and Conclusion 
 
The adoption of distributed component technologies, agent-based communication, and 
encapsulated metadata, leads to a dynamic GIService architecture able to provide flexible, 
dynamic, and comprehensive GIServices.  Implementation will force the envelope on 
technical and institutional constraints, such as vendor-dependency, complex software 
specification and implementation of flexible standards, to insure compatibility across 
different component frameworks and heterogeneous databases.  To deploy a dynamic 
GIService architecture, the GIS community must work together to confront these 
limitations.  The following discussion illustrates the major impediments to adopting 
dynamic GIService architecture, from various stakeholder perspectives. 
 
The system developer’s perspective alludes to many continuing technical impediments.  
First, selecting the right component technology for distributed GIServices is extremely 
difficult.  The selected technology must provide a robust, secure, and efficient 
communication mechanism via the Internet/Intranet.  Security and stability will remain 
major considerations for distributed GIServices, because many geospatial datasets and 
services are valuable and critical.  Network vulnerability can cause serious problems for 
GIServices, due to viruses, hackers, and network traffic jams.  Inevitably, distributed 
GIServices will face security problems because a GIS node cannot effectively monitor 
distributed objects shared across the Internet.  An associated issue involves the challenge 
to integrate distributed solutions with legacy systems.  Many valuable GIS datasets and 
programs reside in legacy systems that provide essential services for the scientific and lay 
public.  Current distributed component technologies provide certain approaches to 
integrate legacy systems, such as “object-wrapping” and middleware solutions.  However, 
these approaches may reduce the performance of legacy systems, or simply prove 
incompatible.   
 
Second, customizing existing technologies for distributed GIServices forms a major 
implementation challenge.  Since distributed component technologies and web services are 
not designed specifically for GIServices, many requirements of GIServices are not taken 
into account.  For example, existing technologies do not account for the complexity of 
geodata models and functions, or for the huge volume of geospatial databases and digital 



 22 

image archives.  More important perhaps are the special characteristics of geospatial 
information, including scale-dependent geometry and content, spatial dependency and 
spatial heterogeneity, and relationships between measurement dimensions (Yuan et al. 
2001).  Adding adequate GIS functions and APIs to establish a high-level functionality to 
accommodate these special characteristics are essential for the successful distribution of 
GIServices, and increase system development time and complexity incrementally.  
 
From the perspective of vendors, integrating different component technologies is at present 
an expensive and presently unnecessary hindrance.  Many people think that a “superior” 
technology will guarantee successful adoption and popularity in the future (this is the 
“Adopt it and they will come” argument).  However, in many cases the computing industry 
does not adhere to this belief.  Examples include the failure of the NeXt operating system, 
of OpenDoc, and of IBM’s OS2 operating system.  In practice, the “best” technology does 
not ensure automatic acceptance.  Vendor support, marketing strategies, and usability 
feedback can ensure or derail the future development of any technology.  Thus, the choice 
of an appropriate distributed component technology requires consideration of technical 
features, implementation details, and actual experience in practice.  
 
Inevitably, GIServices will have to tolerate heterogeneous frameworks because no 
distributed component technology will be optimal for all kinds of tasks.  A robust 
technology should integrate with, and migrate into different frameworks.  Currently, most 
distributed component technologies have proposed solutions for integrating to future 
technologies.  However, little evidence demonstrates that these proposals will work.  
Software vendors are still partially or completely hesitant to integrate their technology with 
other vendors’ because of marketing considerations.  The GIS community should 
encourage vendors to adopt a true integration of distributed component technologies; it 
will not happen automatically.  It is dangerous for the GIS community to just wait and see 
what happens in the commercial sector.  
 
From the perspective of users, it is important to keep in mind that the goal of all the effort 
in revising system design is to maximize capabilities.  Traditional GISystems do not 
provide users with flexible and dynamic services.  Future GIServices should innovate 
functions instead of simply mimicking current capabilities.  Putting traditional GISystems 
on-line is not equal to distributing GIServices.  The GIS community will invent new tasks, 
such as digital libraries, distance learning, cyberspace navigating, network-based decision 
support systems, virtual tourism, etc. that cannot be supported by current GIS 
functionality.  Innovative capabilities will energize the development of distributed 
GIServices and provide users with better, more comprehensive tools. 
 
To summarize, the GIS community needs to consider the advantages and the disadvantages 
of distributed GIServices, and to acknowledge the very compelling arguments of all 
stakeholders prior to adoption.  The following paragraphs itemizes the major advantages 
and disadvantages of dynamic, distributed GIServices in comparison with traditional 
GISystems. 
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Several advantages are easily identified.  Flexible integration of heterogeneous data models 
and software components would mean working with no bigger GIS software suite than is 
appropriate for a task.   The reduced requirements for local computing resources would 
additionally speed implementation of mobile GIS computing as well as facilitate adoption 
across both sides of the Digital Divide.  Modular, customizable services based on reusable 
programming code can reduce development costs for new services, and move access to 
GIServices to a more equitable status.  Intelligent management of geospatial information 
through encapsulated metadata should by itself promote easier updates, help to monitor 
uncertainty levels and thus improve usability.  Self-broadcasting metadata can reduce risks 
in cases where decisions based on GIServices must be made quickly. 
 
Several disadvantages must be respected, regardless of one’s enthusiasm about distributed 
technologies.  All allude to the extra costs associated with distributed communication 
(Schroeder 1993).   These include node failures, service failures, possibility of unreliable 
communication or disconnected network links, over which a user or developer may have 
little control.  Complicated software architectures will be more difficult to design , to 
integrate, and to maintain with changing technology, and this has implications for system 
administrators as well.  The issues associated with security apply to systems, services, and 
data equally.   
  
In the opening keynote address of the 14th Symposium on Reliable Distributed Systems, 
Malek (1995, p. xii) alluded to the uncertainties associated with moving to open 
architectures.  His statements apply especially as our community considers adopting the 
new, distributed GIS paradigm.  He said: 

 
• Past:  Mainframes = Sanity and Order;  
• Present:  Open Systems = Insanity & Chaos;   
• Future:  Closed & Open Systems = Peaceful Coexistence  

 
In the past, traditional GIS implied “sanity and order” because they reside on closed 
systems and architectures.  As the development of GIServices begins to shift into a 
distributed paradigm, things become chaotic for all the reasons discussed above.  With the 
support of industrial standards and progress of network technologies, GIS users hope to 
utilize distributed GIServices from both their standalone PCs or Workstation and network-
based distributed GIS nodes, in an easy and friendly way.  Developers and vendors face a 
daunting task of having to re-think how GIServices are delivered, and through what 
channels. Coordination and collaboration present a cultural barrier to distributed 
GIServices that may be far more obstructive than the technical engineering aspects.   
 
The truth of the matter is that a fully open GIServices architecture may not survive in a 
free market economy without considering economic incentives, and furthermore will not 
be adopted until the GIS community identifies collaborative as opposed to competitive 
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solutions to institutional and economic barriers, regardless of what information 
technologies emerge. This paints a potentially dark canvas, but it need not remain so. 
Ultimately distributed GIServices should help all stakeholders in the GIS community to 
communicate, interact, and learn from each other.  It is hoped that these barriers and 
impediments will be explored and answered by the efforts of spatial scientists, information 
scientists, and computer scientists in the future.    
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Figure 1  Three types of GIS architecture. 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2   Dynamic construction of distributed GIServices by node collaboration. 
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Figure 3   Building GIServices “on-the-fly”. 
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Figure 4   Two types of network connection for geodata objects. 
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Figure 5  Two types of network connection for GIS software components. 
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Figure 6  Two metadata schemes (detached and encapsulated). 

 

 

 
 

 
 
 
 
 
 

 

Figure 7   The content of encapsulated metadata for geodata objects. 
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Figure 8  The content and functions of GIS component metadata. 
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Figure 9   A GIS node within a distributed GIServices framework. 
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Figure 10   Three possible collaborations among distributed GIS nodes. 
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Figure 11  A Wal-Mart site selection scenario. 
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